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ABSTRACT

This paper attempts to shed new light on price pressure in the stock market. I first
define a rigorous measure of order flow imbalance using limit order data. It turns out
that this imbalance is highly correlated with stock returns, with R2 around 50% for
the average stock. This price impact of orders does not appear to be reversed later.
In fact, the correlation between order flow and return is observed for micro time
intervals of ten minutes all the way to macro time intervals of three months. I then
attempt to distinguish between private information and uninformed price pressure
by looking at the implications of a private information model. For idiosyncratic
returns, where one would expect private information to be important, and the R2

to be high, the R2 is indeed around 41%. However, for the common market return,
where one would expect private information to be minor, the R2 is even higher at
70%. The high R2 on the market suggests that private information does not explain
well the observed co-movement of orders and prices. This points toward a bigger role
for uninformed price pressure than is usually assumed, which, for example, could
lead to the formation of stock market bubbles.
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1 Introduction

In The General Theory of Employment, Interest and Money, John Maynard Keynes con-

cludes, “Thus certain classes of investment are governed by the average expectation of those

who deal on the Stock Exchange as revealed in the price of shares, rather than by the genuine

expectations of the professional entrepreneur.” In other words, prices will not be the ratio-

nal valuation of a “professional entrepreneur,” but will reflect traders’ psychology through

the mechanism of supply and demand. It seems that today’s financial press also has some

sympathy for the price pressure argument, as it often explains price drops by heavy selling,

or price increases by an excess of buyers, even in the absence of a change of fundamen-

tals. However, the very elegant efficient market paradigm, and the work of Scholes (1972)

in particular, has questioned this insight and argued that, except for short term temporary

adjustments, prices will be driven only by information, either public or private.

An important problem for this paradigm has been raised by Roll (1988). His results

suggest that news cannot explain more than 30% of the price changes, instead of 100% as

one could at first expect. This R2 includes the regression on the industry and principal

components of the return, which are assumed to reflect perfectly market-wide news. This

means that only the relationship between company specific movements and news is really

examined, and not assumed. To study these idiosyncratic movements, Roll distinguishes

days with company news from days without. The idea is that on days without company

specific news, the market wide factors should be the sole determinants and the R2 on these

factors should be close to 100%. However, the difference in R2 between days without news

and all days together is less than two percentage points (and both R2 are below 30%). It

seems that a lot of the idiosyncratic variance exists without any idiosyncratic news. So for

the idiosyncratic part of stock returns, where the effect of news is really studied, the news

does not seem to explain returns very well. This result has been an important puzzle since its

publication, and it is interesting to find variables that can account for price changes better

than news do.

A related paper is French and Roll (1986), who show that public information explains

only a small part of stock returns. They study stocks on days when the New York Stock

Exchange is closed but the rest of the economy is active, and find that the variance on
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these days1 is on average only 14.5% of what it is when the exchange is open. Since the

flow of public information is at least as big during these exchange holidays (which include

Presidential elections), their results suggest that only 14.5% of a stock’s daily variance can

be attributed to public information. So public information2 does not explain price changes

very well.

In this paper I do not consider public information, concentrating instead on private

information and mechanical price pressure. The importance of private information and the

way it can affect prices as well as orders has been explored in the microstructure literature,

with the work of Kyle (1985) in particular. In this context it is admitted that prices will

move with supply and demand imbalance because the change in demand might reveal some

private information. However, the quantitative importance of supply and demand as one of

the driving forces of stock return has not been established, and it is often ignored altogether

by mainstream finance, as it is taught, for instance, in MBA programs. Indeed, it is often

argued that there is no imbalance, because the volume bought by some is equal to the volume

sold by others.

In this paper, I hope to shed new light on the relationship between stock return and

supply and demand imbalance. I first define rigorously the order flow imbalance. To that

end, I do not rely on realized transactions, where the volume bought is equal to the volume

sold, but on unrealized intentions, in the form of limit orders, where an imbalance can

exist. This new measure of order flow imbalance turns out to be strongly correlated with

stock movements, with an R2 around 50% for the average stock, higher than the R2 of

Roll (1988). This impact of order imbalance on the price is not reversed later, and remains

true not only for micro time horizons of 10-30 min., but also for macro time periods of

three months. To address the causality issue, I show that there is no reverse causality, and

argue that a common driving factor would be part of public information, ruled out by the

work of French and Roll (1986). Finally, I attempt to disentangle two causal explanations:

1They estimate a two day variance, from the closing price before the holiday to the closing price on the
day after the holiday, so that public news have a full trading day to affect prices. The two day variance is
1.145 a normal day’s variance.

2In fact their argument also deals with a particular type of “private information”: faster analysis of public
information, as long as it is analyzed during the next day. So in this paper I do not consider this kind of
“private information.”
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private information and mechanical price pressure. To that end, I distinguish the market

return from the idiosyncratic return and study the implications of a private information

model in the spirit of Kyle (1985), where order flow imbalance is a good measure of private

information. Since the potential for leakage of company-specific information is greater than

that of market-wide information, one would expect a relatively large fraction of idiosyncratic

movements to be explained by the order flow imbalance, and indeed the R2 is about 41%. On

the other hand, one would expect a relatively small fraction of the global market movements

to be explained by the order flow imbalance, but the R2 is even higher at 70%. I, therefore,

argue that the private information model is not well supported by the data and that it could

be useful to look deeper into uninformed price pressure.

It is useful to see how uninformed orders could have a long term impact on the price. It is

well known from the microstructure literature that uninformed orders can have a temporary

impact: a buy order will push the price upwards for inventory reasons with a market maker,

mechanically with a limit order market. However, information efficiency would suggest that

this effect is only temporary if the order is uninformed: arbitrageurs will soon provide the

necessary liquidity to bring the price back to its previous3 level. But it is also possible that

these arbitrageurs don’t bring it completely back because the benefit is small and the risk is

high (the price will indeed one day come back to its efficient value but the arbitrageur may

need to wait a long time and face huge price changes in between). In sum, noise trades are

not faced by infinite liquidity, and therefore have a long-term impact on the price.

If this long term impact accumulates over days and years, it can eventually create bubbles,

such as the March 2000 Internet bubble. Of course, these bubbles will eventually burst, and

prices will revert to fundamentals after ten years or so. However, the interim deviations

are sufficiently important to warrant interest in their own right. Here I suggest that these

bubbles could originate in the microstructure impact of the order flow imbalance when the

orders are placed mainly by uninformed investors.

Several previous papers distinguish buyer initiated and seller initiated transactions to

explain price changes. Although their measure is based on realized transactions, it is still

related to my measure of order flow imbalance, since an excess of limit buy orders is likely to

3Modified for the information which has arrived in between.
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generate aggressive buy orders that result in buyer initiated transactions. Hasbrouck (1991)

uses NYSE transaction data and concludes that the impact of a trade is a positive, increasing

and concave function of its size, with R2 at 10%. Hausman, Lo, and MacKinlay (1992) use an

ordered probit model to take directly into account the discreteness of the tick size. Evans and

Lyons (2000) also use signed transaction data on the Foreign Exchange dealer market rather

than on the stock market, and they find R2 similar to mine, showing that the imbalance

explains the Forex returns quite well. Compared to mine, their data only include realized

transactions, without their volume or intraday information on a sample of only 89 trading

days. They interpret their finding in a private information framework. However, they call

private information the volume that traders are willing to buy or sell. This is something

which noise traders with absolutely no information about the financial asset know as well.

It is, therefore, not very different from a direct price pressure interpretation.

Other papers look at the impact of imbalances on stock prices by restricting themselves

to large trades. This literature started with Scholes (1972). He finds that the impact of a

trade does not increase with the block size, and concludes by rejecting the price pressure

hypothesis. Yet in a later study of large trades, Holthausen, Leftwich, and Mayers (1990) use

high frequency transaction data, which yield more precise estimates of the impact of large

trades, and find that the impact does increase with the trade size (as Hasbrouck (1991) finds

without restricting himself to large trades). This can cast doubt on the original conclusion

of Scholes (1972), and the rejection of the price pressure hypothesis.

Other papers document a consistent link between volume and volatility, surveyed for

example in Karpoff (1987). This link is a direct implication of the impact of trades and

orders on asset prices, by taking the absolute value on both sides.

In the next section, I describe the data from the Paris Bourse and I define the order flow

measure, taking into account the concavity of the price impact of an order as a function

of its volume. I provide some summary statistics and time series properties of the order

flow imbalance. The third section presents the relationship between the aggregated order

flow imbalance and the stock return, and differentiates the impact of predictable versus

unpredictable orders. I then show that this impact is not reversed subsequently, and that the

correlation is true for very different time horizons. The fifth section attempts to distinguish
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between private information and mechanical price pressure, and presents a simple model of

mechanical price pressure.

2 Data, Definitions, and Summary Statistics

2.1 The Data

One of the most common arguments against the study of supply and demand for financial

assets is that there is no imbalance. Indeed, the volume bought is equal to the volume sold

when you look at realized transactions. To get around this problem, some researchers have

distinguished between buyer and seller initiated transactions. However, this distinction does

not solve the equality objection in a pure market maker setup where no limit orders are

allowed. Indeed, suppose that only market orders are allowed, with a market maker who

clears his inventory regularly,4 then, even if the econometrician knows perfectly whether the

market maker was on the buy side or the sell side, the total volume sold to the market maker

is equal after each inventory clearing to the total volume bought from him. Therefore, there

is never any imbalance in volume. This property limits the effectiveness of using transaction

data to measure the order flow in a pure market maker setup, and probably extends to

markets where limit orders are rare.

This is the main reason why I use the Paris Bourse data: limit orders are the norm

not the exception, and their submission is available to the econometrician. Although in

transaction terms the volume bought is still equal to the volume sold, in submission terms

there can be many submitted orders that are never executed. There can, therefore, be an

imbalance between submitted Buy and Sell orders (some are later executed, some are not)

which I measure directly with this data set.5

4This condition can be weakened to having a bounded inventory with the equality between buy and sell
volume true in the limit.

5If one goes deeper, one could ask what happens to the unexecuted limit orders. They of course get
cancelled, most of them automatically at the end of the day or the month. If the impact of all the cancellations
is equal to that of all the submissions, then again the total net (submitted minus cancelled) volume of orders
is equal on the buy and sell side with a monthly time frame (and both are equal to the transaction volume).
However, submissions are usually made relatively close to the current best quote, whereas cancellations often
happen automatically, after the price has moved away and the submitted order has remained. If one considers
a cancellation as a negative submission, then submitted orders, for a given volume, have a decreasing impact
when submitted further away from the best quotes. As a first approximation, one can then argue that
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Although market participants may feel the imbalance on markets that rely on market-

makers instead of limit orders, it is not obvious how to measure6 their unrealized wishes, i.e.

the supply and demand imbalance. On the contrary, on the Paris Bourse limit orders are

dominant and the imbalance is easy to measure. Besides, the Paris Bourse data is very clean

and complete. Because the Bourse is a fully automated electronic exchange,7 it is virtually

free of errors.

The Paris Bourse is an order driven market, and there is no market maker, or any

appointed liquidity provider. Traders give their orders to brokers who then pass them on

to the central computer. It is then available on the traders’ screen, usually within the next

second. The Paris Bourse allows agents to place different types of orders. The most common

is the limit order. Its main characteristic is to have a maximum price (for a buy order) at

which the agent is ready to buy the stock (the buy and sell orders have exactly symmetric

properties, so I will only describe buy orders). If a submitted buy order is higher than the

current best ask, it is immediately executed. If not, it remains on the order book until either

it is hit by a sell order, or it is cancelled, or it has a preassigned finite life8. If two different

buy orders are at the same price, then a time priority is given to the order first entered in

the book9.

There are two types of market orders. The first type is executed in full only if its volume

is less than the available volume at the ask price. If not, the remaining volume is transformed

into a limit buy order at this old ask price. The second type of market order is immediately

executed in full, against all the available counterparts in the sell order book (and not only

against the volume available at the ask price).

submissions are close enough to the best quotes to have an impact, whereas cancellations are not and can be
ignored. This is the approximation I am forced to make, since I do not have the cancellation data. Having
this data would allow me to have an even better estimation of the impact of supply and demand. As we’ll
see, the approximation already yields very good results.

6If one wanted to build an order flow imbalance measure on the NYSE for example, one could do the
following. First identify buyer initiated trades from seller initiated, using the Lee and Ready or a similar
algorithm. Because there are some limit orders on this market, there can be an imbalance in volume and one
could use the net volume of trades. But because of the concavity described in section 2.4, using the SQRT
aggregation defined in section 2.5 would be a better measure.

7Biais, Hillion, and Spatt (1995) provide a detailed description of the microstructure of the Paris Bourse.
8All the orders are automatically cancelled at the end of each Bourse month.
9When a limit order is submitted, it is possible to hide some part of it. The hidden part is not visible by

any trader or broker until it gets executed. However, the impact of both parts are quite similar, and I do
not distinguish between them in this paper.
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The database goes from January 4th 1995 to October 22nd 1999 inclusive. I only look at

the continuous trading session, which, until September 19th 1999, started just after 10AM

and finished at 5PM. From September 20th 1999, it started at 9AM and finished at 5PM10.

The database includes all the transactions and all the orders that were submitted on the

Paris Bourse, as well as the best quotes available at any time. In comparison, the TORQ

(Trades, Orders, Reports and Quotes) database for the New-York Stock Exchange (NYSE)

misses about half the total volume of submitted orders (Kavajecz (1999)).

The main French Index is the CAC40, which includes the 40 biggest stocks. I looked at

the 40 stocks that were part of the CAC40 in January 1995. At the end of the sample, 34 of

them were still quoted as independent companies, so the results of this paper are provided

only11 for these 34 stocks.

To make things more concrete, I sometimes present the results obtained for one company,

Lafarge, which has average properties in many directions. But to show that the results are

general, I prefer when possible to report the average results for the 34 stocks.

2.2 Variable Definitions

I calculate the (log) return using mid-quotes. I also performed robustness checks using

transaction prices instead of the mid-quote and got nearly identical results.

I used different time horizons, from 10 min., 30 min., one day, one week, one month up to

three months. At ten min., there is still quite a bit of microstructure noise (as measured by

the bid-ask bounce or negative auto-correlation which disappears at 30 min.). On the other

hand, at three months I have only 20 independent data points and, therefore, little statistical

power. However, similar results were obtained for these widely different time intervals as

reported in Table 12. For horizons longer than one day, the return is calculated from close to

close. For one day, one can either calculate the return from opening to close (night excluded)

or from close to close (night included) and I present results for both cases.

10There are also 2 call auctions, one just before the opening, the other at 5:05PM which was created on
June 2 1998, but I remove all the order flow data they generated, because it is harder to define and measure
order imbalance in these auctions.

11The 40 companies allow me to check for survivorship bias. However, since the results were similar for
the 6 stocks that disappeared, and to have comparable results, I report results only for the 34 surviving
stocks.
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I distinguish the different buy orders (and similarly the sell orders) according to the level

of urgency chosen by the trader submitting the order. This corresponds to the speed with

which it is likely to be executed. The reason for this distinction is that one would expect

more urgent orders (of similar size) to have a bigger12 impact on the price, as observed in

Figure 2.4. The basic distinction is between:

1. market orders, which are executed immediately;

2. spread orders, which are submitted between the best bid and ask (and thus change

either the bid or the ask);

3. book orders, which are submitted inside the order book.13

To be more precise, after calculating the log-mid-quote p0 = ln(bid)+ln(ask)
2

, I call a buy

order:

1. market if executed immediately, i.e. all the market orders and limit orders such that

P ≥ ask;

2. spread if placed within the spread: ask > P > bid;

3. book if ln(bid) ≥ ln(P ) > p0 − 0.005.

To have consistent and symmetric definitions, I use the natural logarithm. However, one can

consider the mid-quote as being roughly the arithmetic average between the bid14 and the

ask price. One can also think of book orders as being above the mid-quote minus 0.5% (for

buy orders).

To define the order flow, I follow the work of Lo and Wang (2000) and use the share

turnover (the number of shares in the order divided by the number of shares outstanding)

as a measure of the volume of each submitted order. I call vi the volume in share turnover

12This is predicted by the mechanical impact, which is direct for market and spread orders but indirect
and less likely for book orders. It is also predicted by a private information setup, where a privately informed
agent would want to use his information before others know it, so that urgent orders would on average be
more informed.

13I discard orders too far away from the best quotes, as I have found that their impact is negligible.
14I use the best quotes available when the order is submitted, not outdated ones from the beginning of

the time interval.
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Lafarge
Sample size 1202
Volatility (night excluded) 1.75%
Volatility (night included) 2.06%

Number of orders
market buy 250
market sell 257
spread buy 101
spread sell 97
book buy 172
book sell 164
Average volume of one order ×106

market buy 7.3
market sell 7.0
spread buy 9.6
spread sell 9.7
book buy 11.5
book sell 12.4

Table 1: Summary statistics for Lafarge over one day.
The results are reported for the Lafarge stock over one day. Only the volatility measure changes when one includes

or excludes the night.
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Mean Std. Dev.
Sample size 1202 0
Volatility (night excluded) 1.73% 0.21%
Volatility (night included) 2.13% 0.46%

Number of orders
market buy 241 126
market sell 282 190
spread buy 77 30
spread sell 73 28
book buy 166 90
book sell 158 86

Average volume of one order ×106

market buy 9.38 5.89
market sell 8.49 5.33
spread buy 12.3 8.90
spread sell 12.1 7.73
book buy 16.3 16.7
book sell 15.6 10.8

Table 2: Summary statistics over one day.
The results reported are the average of the results on the 34 stocks, and the cross-section standard deviation.

of each order i. Robustness checks confirm that using share volume or dollar volume gives

very similar results.

To measure liquidity, I use the Weighted Average Spread (WAS). This information is

also available from the database at each point in time. It consists of the weighted average

bid (W.A.Bid) and ask (W.A.Ask). The W.A.Ask is the price which would be reached by

a large buy market order fully executed against the current available book. The size of the

large market order that is used to calculate the WAS is called the block size and is chosen

by the Paris Bourse using liquidity criteria for that stock.15 A large WAS means it is hard

to place large orders and is a proxy for illiquidity. I define the:

• WAS facing buy orders as ln(W.A.Ask)-mid;

• WAS facing sell orders as -(ln(W.A.Bid)-mid).

15For Lafarge for example, it is 5 × 10−5 of the shares outstanding and the average one sided WAS is 53
basis points.
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2.3 Summary Statistics

Table 1 gives some summary statistics for Lafarge. Table 2 gives average summary statistics

for the 34 stocks.

2.4 The Impact as a Concave Function of the Volume of each

Order
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Figure 1: The 30 min. impact of one order on Lafarge’s price, as a non-parametric function of
its volume. The log-return is calculated from just before the order arrives to 30 min. after it has arrived. I use
the Nadaraya-Watson kernel regression with Epanechnikow kernel. I distinguish the orders by their urgencies and
between buy and sell orders. The results are reported for the Lafarge stock.

To have a better idea of how each order affects the price in the “long16” run, I study the

16The 30 min. impact is not reversed later. If anything, it tends to increase a little as I verify with a
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change in log price from before the order arrives to 30 min.17 after it has arrived. I use the

non-parametric Nadaraya-Watson kernel18 regression to find out about non-linearities in the

price change as a function of the order’s volume. The results are reported in Figure 2.4 for

Lafarge. Similar results are obtained for the other stocks.

One can see that the price impact is a concave function of the volume of the order. It is

also observed that more urgent orders have a larger impact, for a given volume. The curves

that are obtained look similar to a power function rt = λvδ
i .

Market Buy Spread Buy Book Buy
λ× 103 84 85 142
(std. err. ×103) (14) (41) (98)
δ .37 .38 .47
(std. err.) (.03) (.04) (.05)

Table 3: Power function estimate for the 30 min. impact of an order as a function of its volume.
The log-return is calculated from before the order arrives to 30 min. after it has arrived. I use non linear least

squares to estimate the impact as a power function of the volume. rt = λvδ
i . I report the coefficients λ and δ,

and their standard errors estimated by block bootstrap. I report the estimates and standard errors averaged over

the 34 stocks.

I use non-linear least squares to estimate λ and δ, and report the results of this estimation

for the three urgencies of buy orders in Table 3. The standard errors are estimated using block

bootstrap, with a block size of one week, to take into account overlapping data, temporal

dependence and heteroscedasticity. Although the power δ appears to be slightly different

between the different types of orders, I choose the approximation δ = 0.5 when doing the

aggregations in the subsequent sections.

This concavity result has been known since at least Hasbrouck (1991). It can seem at

first surprising. Someone could interpret this result as an advice to bundle orders instead of

splitting them, in order to reduce the price impact of a given volume. This is contrary to

what is observed in practice and would be a bad advice for two reasons. First, traders are

60 min. non parametric regression compared to the 30 min. reported in Figure 2.4. In addition, when
regressing the 30 min. return on the lagged 30 min. order flow I also get a small but statistically significant
positive coefficient which confirms the small continuation.

17The 30 min. interval is chosen because at shorter horizons the return is negatively autocorrelated (bid-ask
bounce). On the other hand, the horizon is short enough to have as much statistical power as possible.

18I select the Epanechnikow kernel. I use a variable bandwidth to take into account the high density of
small orders relative to large orders.
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mostly concerned about execution costs, which are different from the 30 min. price impact,

and even from the immediate price impact (which is the maximum price paid for a buy

order, not the average price). Second, and perhaps more important, the observed concavity

is obtained unconditionally. However, it is possible to have linear conditional impacts that

become unconditionally concave. Indeed, suppose that when a buy order is faced by a lot

of liquidity in the sell order book, it has a smaller impact. Suppose also that traders are

willing to place larger orders in this condition because of the smaller impact. The result

will be large orders with a relatively small impact. Conversely, when there is little liquidity,

there will be more small orders and they will have a relatively larger impact. The two states

bundled together will create concavity: large impact for small orders and small impact for

large orders, compared to the conditional linearity. This variation with liquidity is exactly

what I find in the data in Table 4.

Quintile 1 2 3 4 5 all quintiles
(most liquid) (least liquid)

λ× 103 145 191 238 305 541 255
(std. err. ×103) (28) (28) (31) (43) (60) (22)
V̄ × 107 133 107 100 94 83 105
(std. err. ×107) (14) (7) (6) (6) (5) (5)

Table 4: Variations in impact λ and average order volume V̄ according to liquidity quintile for the
market buy orders. The five quintiles are constructed using the WAS facing buy orders: ln(W.A.Ask)-mid. A

small spread (1st quintile) indicates high liquidity, and a large spread (5th quintile) small liquidity. The log-return

is calculated from before the order arrives to 30 min. after it has arrived. The impact is estimated with the square

root approximation: rt = λv0.5
i . I report for each quintile the average order volume V̄ and the estimated λ, and

their standard errors estimated by block bootstrap. I report the results, averaged across all 34 stocks, for the

market buy orders.

Two different explanations for the concavity have been proposed in the literature. The

first one, called stealth trading, is due to Barclay and Warner (1993). They argue that

the price impact of orders increases with their private information content. They then pro-

pose19 that informed traders prefer medium orders because large orders reveal their superior

knowledge while small ones face high transactions cost. This explanation does not address

19This argument does not explain why small orders, considered to be uninformed, have a higher impact
for a given total volume to be bought (or sold). It does not explain either why privately informed traders
would not use larger orders, which have a smaller impact for a given volume to be bought (or sold).
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the bundling/splitting problem, as investors could have incentives to bundle their orders in

this setup. A more recent explanation is due to Gabaix, Gopikrishnan, Plerou, and Stan-

ley (2002), who argue that large orders are placed by more patient traders, so that for a

given volume they have a smaller impact than a bundle of small, impatient, orders. This

could be related to the conditioning issue, as patient traders might wait for periods of higher

liquidity.

Although it isn’t possible to condition perfectly on liquidity, the Weighted Average Spread

(WAS) is a reasonable proxy. I, therefore, divide the buy orders in five quintiles depending

on the WAS that they are facing. The conditional impact I find inside each quintile isn’t

linear either, perhaps because the WAS is a noisy proxy for liquidity. However, the average

volume and impact vary across the quintiles as I hypothesized above. Table 4 gives the

average volume V̄ and the impact λ obtained for each quantile of buy market orders, using

the square root approximation for the impact, rt = λv0.5
i .

The pattern of decreasing impact20 and increasing volume with increasing liquidity is

found for the three urgencies, market, spread and book orders, and for both the buy and sell

orders. It is a possible explanation for the unconditional concavity of the price impact as a

function of an order’s volume.

2.5 The Order Flow Measure.

This concavity, and a possible explanation, being established, I now take it into account to

construct a measure of the order flow imbalance. Because I’m using fixed time intervals, I

need to aggregate orders submitted during each time period. A first natural measure would

have been to add the volume of each buy order and subtract the volume of sell orders:

V =
∑

i∈buy orders
(vi)

1 − ∑

i∈sell orders
(vi)

1. Even if I used this volume measure, the fact that I

have access to limit order data would ensure that there is an imbalance between submitted

buy and submitted sell orders. I would thus measure the imbalance in investors’ intention

to trade. However, it turns out that, due to the observed concavity, the net volume is not

the best aggregate order flow measure. An alternative, suggested by the work of Jones,

20This pattern is also found using kernel non parametric functions of the volume, instead of the sqrt
approximation.
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Kaul, and Lipson (1994), would have been to use only the net number of orders: N =
∑

i∈buy orders
(vi)

0− ∑

i∈sell orders
(vi)

0. In fact, the impact of each order being well approximated

by the square root function, I want to transform each order into something close to its own

price impact, so as to obtain the “total price impact” when adding21 up. So the aggregate

measure that I use is the SQRT measure: SQRT =
∑

i∈buy orders
(vi)

0.5 − ∑

i∈sell orders
(vi)

0.5.

This last aggregate measure also turns out to be the one which is best correlated with price

changes over fixed time intervals, as I report in section 3.2.

The three order flow variables I use are thus:

1. Market=
∑

i∈market buy (vi)
δ −∑

i∈market sell (vi)
δ

2. Spread=
∑

i∈spread buy (vi)
δ −∑

i∈spread sell (vi)
δ

3. Book=
∑

i∈book buy (vi)
δ −∑

i∈book sell (vi)
δ

where δ = 0.5. In section 3.2, I also use δ = 0 (net number) and δ = 1 (net volume) which

give qualitatively similar results but are not as good quantitatively.

2.6 Time Series Properties of the Order Flow.

To look at the dynamic properties of the order flow, I use the Vector Auto Regression (VAR)

methodology. It turns out that orders are clustered: orders tend to be followed by orders in

the same direction, and with similar characteristics (such as their urgency).

In Table 5, I observe that the order flow imbalance is “autocorrelated.” Orders placed

one day and two days ago tend to be repeated today, in the same direction, and with the

same urgency. It is not only an intraday phenomenon as it has sometimes been thought in

the microstructure literature, since it remains significant at the horizon of two days.22

There are two possible explanations for this “autocorrelation,” which are possibly both

true. The first is order splitting: institutions placing big orders will often split them into

smaller orders, in the same direction and possibly of the same urgency. The second one

is herd behavior: humans have a well-know psychological tendency to imitate each other

21The log return is additive.
22In my data, it is not significant at the three day horizon for most stocks.
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Mktt−1 Sprdt−1 Bkt−1 Mktt−2 Sprdt−2 Bkt−2 R̄2

Mktt 0.20 -0.10 -0.02 0.07 -0.11 -0.04 6.8%
(z-stat) (4.8) (-0.9) (-0.4) (2.2) (-1.2) (-1.3)
Sprdt -0.01 0.21 0.01 0.01 0.12 0.00 8.5%
(z-stat) (-0.6) (5.5) (0.3) (0.4) (3.0) (0.0)
Bkt -0.02 0.07 0.18 -0.02 0.06 0.07 5.8%
(z-stat) (-0.7) (1.0) (5.0) (-0.6) (0.8) (1.9)

Table 5: The VAR of the daily order flows (SQRT), with 2 lags, averaged across all stocks. I

regress the different daily order flows on past order flows. I distinguish between different urgencies, and aggregate

using the SQRT function (SQRT =
∑

i∈buy orders

(vi)
0.5 −

∑

i∈sell orders

(vi)
0.5). I report the AR coefficients and

the R̄2 corrected for the degrees of freedom. I also report the z-stat obtained from the quantiles of block bootstrap

replications. The coefficients, R̄2 and z-stats are averaged across the 34 stocks.

(in crowd behavior or fashion following for example), which would also create the observed

autocorrelation of orders. Since I do not have any information on who placed the order,

I cannot distinguish the two here. However, similar results obtained for orders placed by

individual investors in Jackson (2002) suggest that part of it is herd behavior.

Having defined rigorously the order flow imbalance, as an imbalance of submitted orders

which takes into account the concavity of the impact of each order, and having mentioned

the autocorrelation property of this order flow measure, I now study the relationship between

this order flow measure and price changes over fixed time intervals.

3 High Correlation between Return and Order Flow

Imbalance

3.1 The Basic Return/Order Flow Regression over One Day

In Table 6, I regress the one day log-return (nights excluded) on the simultaneous order flow,

distinguishing the 3 urgency levels and using the SQRT aggregation:

rt = α + λmarketSQRT,markett + λspreadSQRT,spreadt + λbookSQRT,bookt + ηt (1)
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λMarket × 103 λSpread × 103 λBook × 103 R̄2

estimate 57 25 21 53.1%
z-stat 19 5 11

95% Confidence Interval
Lower band 51 16 17 49.3%
Higher band 63 35 24 57.8%

Table 6: The return regressed on the simultaneous order flow (SQRT) for Lafarge over one day.
I regress the one day log return (night excluded) on the simultaneous order flow imbalance, distinguishing

between different urgencies, and aggregating using the square root function (SQRT =
∑

i∈buy orders

(vi)
0.5 −

∑

i∈sell orders

(vi)
0.5). rt = α + λmarketSQRT,markett + λspreadSQRT,spreadt + λbookSQRT,bookt + ηt. I report

the λ coefficients and the R̄2 corrected for the degrees of freedom. I also report the z-stat and the 95% confidence

interval obtained from the quantiles of block bootstrap replications. The results are reported for the Lafarge stock.

I find a relatively high R2 of 52%, comparable to the results of Evans and Lyons (2000) on

the foreign exchange. I also report the block bootstraps estimates of the 95% confidence

interval and z-stat, obtained from the replication quantiles. I use block bootstrapping to

take into account heteroscedasticity as well as any potential temporal23 dependence. In fact,

returns are nearly unpredictable except with the ten min. interval and simple bootstrapping

gives the same confidence intervals for time intervals longer than ten min. Because the nor-

malized regression coefficients are pivotal, bootstrap also provides a second order correction

for the confidence interval. This can be useful since we know that high frequency returns are

non normal and fat tailed. The confidence intervals obtained with White (or Newey-West)

standard errors do not include this second order correction and are a little too narrow at

intra-day frequency. Bootstrapping is also a simple way to get confidence intervals for the

R2, which is asymptotically normally distributed under the alternative H1: R2 6= 0.

In Table 7, I want to report the same results as in Table 6 for all the 34 stocks. For

sake of brevity, I summarize the results and report the average and cross-section standard

deviation of the estimates, as well as the average and standard deviation of the z-stat. Again,

we notice the high R2 and the significance of the results.

These high R2 indicate that our measure of order flow imbalance is well correlated with

23The block size I use is one week.
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λMarket × 103 λSpread × 103 λBook × 103 R̄2

estimate: avrg. 54 49 25 47.7%
estimate: std. dev. 24 40 15 8%

z-statistic
z-stat: avrg. 14 6 8
z-stat: std. dev. 5 2 3

Table 7: The return regressed on the simultaneous order flow (SQRT) over one day: av-
erage results for 34 stocks. I regress the one day log return (night excluded) on the simultaneous or-

der flow imbalance, distinguishing between different urgencies, and aggregating using the square root function

(SQRT =
∑

i∈buy orders

(vi)
0.5−

∑

i∈sell orders

(vi)
0.5). rt = α +λmarketSQRT,markett +λspreadSQRT,spreadt +

λbookSQRT,bookt + ηt. I report the λ coefficients and the R̄2 corrected for the degrees of freedom. I also report

the z-stat obtained from the quantiles of block bootstrap replications. The results reported are the average of

the results on the 34 stocks, and the cross-section standard deviation.

price changes. In this sense, one can argue that it is a good measure of the order flow. In

the next section, I look at two possible alternative measures, the net volume and the net

number, to check that the SQRT is indeed a good measure. Regressing the return on these

alternative measures also provides an economic interpretation of the impact coefficient.

3.2 The Return/Order Regression with Different Powers of the

Volume.

λMarket × 105 λSpread × 105 λBook × 105 R̄2

estimate 2.0 11.9 -2.6 10.5%
z-stat 3.6 9.4 -2.4

Table 8: The return regressed on simultaneous net number of orders for Lafarge over one day.
I regress the one day log return (night excluded) on the simultaneous order flow imbalance, distinguishing between

different urgencies, and aggregating using the net number of orders (N =
∑

i∈buy orders

(vi)
0−

∑

i∈sell orders

(vi)
0).

rt = α + λmarketN,markett + λspreadN,spreadt + λbookN,bookt + ηt. I report the λ coefficients and the R̄2

corrected for the degrees of freedom. I also report the z-stat obtained from the quantiles of block bootstrap

replications. The results are reported for the Lafarge stock.

In Table 8, I report the same results as in Table 6 for Lafarge, but with the net number
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of orders instead of the SQRT. N =
∑

i∈buy orders
(vi)

0 − ∑

i∈sell orders
(vi)

0.

rt = α + λmarketN,markett + λspreadN,spreadt + λbookN,bookt + ηt

I find that the R̄2 is higher with the SQRT. This is also true for the other stocks. The

average R̄2 across the 34 stocks is 47.7% for the SQRT and 10.6% for the net number of

orders.

The estimated λ also gives an economic estimate of the impact. All else equal, an

imbalance of 100 orders submitted between the bid and the ask (spread orders have the

largest average impact) will move the Lafarge stock price by 1.19%.

λMarket λSpread λBook R̄2

estimate 12.8 6.7 -0.4 46.4%
z-stat 13.1 6.0 -1.7

Table 9: The return regressed on the simultaneous net volume of orders for Lafarge over one day.
I regress the one day log return (night excluded) on the simultaneous order flow imbalance, distinguishing between

different urgencies, and aggregating using the net volume of orders (V =
∑

i∈buy orders

(vi)
1−

∑

i∈sell orders

(vi)
1).

rt = α + λmarketV,markett + λspreadV,spreadt + λbookV,bookt + ηt. I report the λ coefficients and the R̄2

corrected for the degrees of freedom. I also report the z-stat obtained from the quantiles of block bootstrap

replications. The results are reported for the Lafarge stock.

In Table 9, I report the same results as in Table 6 for Lafarge, but with the net volume

of orders instead of the SQRT. V =
∑

i∈buy orders
(vi)

1 − ∑

i∈sell orders
(vi)

1.

rt = α + λmarketV,markett + λspreadV,spreadt + λbookV,bookt + ηt

I again find that the R̄2 is higher with the SQRT. This is also true for the other stocks. The

average R̄2 across the 34 stocks is 47.7% for the SQRT and 35.8% for the net volume of

orders.

The estimated λ also gives an economic estimate of the impact. All else equal, an

imbalance in market orders of 0.1% of the shares outstanding will move the Lafarge stock

price by 1.28%.
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3.3 The Predictable Order Flow Imbalance has nearly No Impact

on the Price.

We have seen that the order flow is autocorrelated, and that it is well correlated with

the contemporaneous return. However, we do not expect that the return will be easily

predictable. Otherwise, a simple statistical arbitrage would be available. So it should be the

case that the fraction of the orders which is predictable does not have much impact on the

price. This is what I verify in Table 10.

If a big fraction of the return were predictable, arbitrageurs would exploit it and remove

most of the predictability. This strategy, diversifiable across time (and partly across stocks),

would carry a low risk.

λMkt,pred103 λMkt,res103 λSprd,pred103 λSprd,res103 λBk,pred103 λBk,res103 R̄2

estimate 15 56 -11 51 45 24 49.5%
(z-stat) (0.8) (15.3) (-0.6) (6.4) (2.2) (8.0)

Table 10: The return regressed on predicted (pred) and residual (res) order flow (SQRT) over
one day. I regress the one day log return (night excluded) on the order flow imbalance previously obtained from

a VAR with 2 lags, distinguishing between the prediction obtained from the VAR (pred), and the residual from

the VAR (res). I also distinguish the different urgencies, and aggregate the orders using the square root function

(SQRT =
∑

i∈buy orders

(vi)
0.5 −

∑

i∈sell orders

(vi)
0.5). I report the average results across the 34 stocks.

It turns out to be nearly true. I distinguish the part of the order flow which is predicted

(pred) using the VAR in Table 5, from the residual order flow (res) which is unpredicted by

the VAR. The predicted part has usually an insignificant impact on the return, whereas the

unpredicted order flow has a very significant impact. So the return is nearly unpredictable.

However, the predicted book orders have a barely significant impact on the price. This also

means, since the book orders are “autocorrelated,” that yesterday’s book orders will predict

the return today. Although this might look like an opportunity for statistical arbitrage, it is

more likely that the book orders needed to forecast the return were not known on the day

they were submitted24 so that arbitrageurs could not see and exploit this predictability in

real time.

24The Paris Bourse allows hidden orders which become visible only gradually, when they are met by
opposite market orders.

21



4 No Short-Term Reversal of the Price Impact.

We have seen in section 2.4 that each order has a price impact which lasts for at least 30 min.

In section 3.1 the aggregated measure of the order flow is shown to be highly correlated with

price changes over one day. But this impact could be only short term and be reversed within

the next day or so, as is often assumed of mechanical price pressure.

Mktt Sprdt Bkt R̄2

rt+1 × 103 6 -2 4 0.6%
(z-stat) (1.3) (-0.4) (0.7)

Table 11: The one day return regressed on lagged order flow. I regress the one day log return (night

included) on lagged order flows. I distinguish between different urgencies, and aggregate using the SQRT function

(SQRT =
∑

i∈buy orders

(vi)
0.5 −

∑

i∈sell orders

(vi)
0.5). I report the regression coefficients and the R̄2 corrected

for the degrees of freedom. I also report the z-stat obtained from the quantiles of block bootstrap replications.

The results are averaged across the 34 stocks.

Table 11 checks if there is a reversal of the price impact during the next day. If there was,

one would expect that a positive order flow imbalance today forecasts a negative return to-

morrow, so as to remove part of today’s impact on the price, and to find negative coefficients.

This is not observed in Table 11, suggesting that the price impact is either permanent, or

that it is only very slowly reversed, and that the regression of Table 11 cannot detect it.

This absence of short term reversal suggests that with time horizons longer than one day,

one should also find a co-movement of the stock price with the order flow imbalance. This

is what I report in the next section.

4.1 The Return/Order Regression with Different Time Periods.

In the previous sections I have used the daily time period as the reference. However, it is

also interesting to look at different horizons. The results are similar at shorter horizons,

implying that this co-movement appears in the microstructure and comes from the impact

of each order, as was already suggested in section 2.4. The fact that the co-movement of

orders and prices is also observed at longer horizons than one day suggests that this impact

is not much reversed, at least for the next three months.
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To have enough power at long horizons (only 20 data points with three month intervals),

I only use one independent variable and do not distinguish between the different urgencies. I

use the square root method of aggregation: SQRT =
∑

i∈buy orders
(vi)

0.5 − ∑

i∈sell orders
(vi)

0.5).

To have comparable results, I do the same regression:

rt = α + λAllSQRT,all urgenciest + ηt

with different time intervals: 10 min., 30 min., one day (night excluded), one day (night

included),25 one week, one month, three months. I report the estimate for λ, the z-stat and

the R̄2 of these regressions, averaged across the 34 stocks in Table 12.

λAll × 103 z-stat R̄2

10 min. 67 35 38.7%
30 min. 62 32 42.6%
one day (-night) 41 19 43.5%
one day (+night) 47 18 38.9%
one week 38 10.1 38.6%
one month 32 5.6 36.2%
three months 21 2.6 26.9%

Table 12: The return regressed on simultaneous order flow (SQRT) over different time in-
tervals, average results for 34 stocks. I regress the log return on the simultaneous order flow im-

balance, without distinguishing between different urgencies, and aggregating using the square root function

(SQRT =
∑

i∈buy orders

(vi)
0.5 −

∑

i∈sell orders

(vi)
0.5). rt = α + λAllSQRT,all urgenciest + ηt. I report the

λ coefficients and the R̄2 corrected for the degrees of freedom. I also report the z-stat obtained from the

quantiles of block bootstrap replications. The results reported are the average of the results on the 34 stocks.

As expected by the bigger sample sizes and more statistical power, the z-stats are very

high for short time intervals and diminish all the way to three months. However, even at

this horizon, λ is still statistically significantly positive for most stocks.

One also notices the diminishing R2 from one day to three months. This might suggest a

partial reversal of the impact. However, when regressing future returns on past orders with

various time horizon, I cannot find a statistically significant reversal of the price impact for

most stocks and time intervals (there seems to be some economically important reversal after

25The night included is the previous one: returns are calculated from close to close.
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six month horizon, but my short database does not yield statistically significant estimates).

Another phenomenon which could better explain the decreasing R2 is that future orders are

(slightly but significantly) negatively correlated with past returns, as reported in Table 13.

When aggregated over long horizons, this negative lead-lag correlation can decrease the

positive contemporaneous correlation. On the other hand, at very short horizons, the average

R2 is also smaller, which can be explained by microstructure noise (discreteness of the tick

size etc.).

The λ coefficient is also decreasing26 from short to long horizons. This effect is stronger

than for the R2 and can be explained by the “autocorrelation” of the order flow and the fact

that predicted orders do not have an impact on the price as we have seen. These two effects

combined generate27 a decreasing28 λ.

4.2 A Visual Impression of the Order Flow and Price

As a visual confirmation of the long term correlation of return and order flow, I report a

graphical representation of their movements in Figure 2. The continuous line represents29

the cumulative log return of Lafarge, using daily closing prices. It is thus the graph of (log)

prices. The dashed line represents the cumulative order flow imbalance, that is, the sum

of daily imbalances from date 0 to date t. The order flow indicator is the SQRT of orders.

To take into account the different impacts of market, spread and book orders, I used the

coefficients of a daily regression (nights included) when adding the three together.

The similarity of the two lines is striking. The ups and downs of the price level are also

present in the cumulative order flow imbalance. This is true not only for the daily changes,

but also for longer horizon of weeks and months, perhaps years.

26It is also smaller for ten min. than for each order separately as in Table 4, probably for the same reasons.
27It’s easy to understand why with simplifying assumptions. Let’s assume for now rt = λft + ηt, ft+1 =

αft + 0× rt + εt with α > 0 and rt+1 = 0× ft + 0× rt + ut. This gives rt+1 + rt = λ∗(ft + ft+1) + vt with
λ∗ = λ 2+α

2+2α . So the impact coefficient λ is lower for longer horizons. Note that R2∗ = (1+α/2)2

1+α R2 is nearly
constant, slightly bigger for longer horizons under these assumptions. Exactly the same results are obtained
by refining these assumptions for the fact that predicted orders have no impact on the price.

28The same two assumptions also create the increase in λ from daily without night to daily with the
previous night included in the return. Indeed, the orders that follow the night are probably correlated to
the unobserved orders (placed on similar stocks in foreign markets) that happened during the night. So the
night return is correlated with the following day orders, which increases the λ.

29Evans and Lyons (2000) produce a similar graph for the foreign exchange market.
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Figure 2: Cumulative return and cumulative order flow imbalance for Lafarge.

The continuous line is the cumulative return of Lafarge (using daily closing prices). The dashed line is the

cumulative order flow imbalance. The order flow indicator is the Sqrt of orders. To take into account the various

impacts of the three different urgencies, I used the three coefficients from daily regressions (night included) when

adding together the different buy and sell orders.

25



5 Private Information or Mechanical Price Pressure?

After building a measure of the order flow that takes into account the concavity of the price

impact and the possible inequality of submitted limit buy and sell orders, I have reported

the strong co-movement of stock prices and order flow which appears at the microstructure

horizons but remains at least until three months without being much reversed. The main

question is: Why do they move together? I first look at the causality question: Do the orders

cause the price to change? Then I attempt to disentangle two potential ways in which orders

can cause price movements: private information and mechanical price pressure.

5.1 Causality

In this section I check that the causal interpretation is justified: Is it really the orders that

cause price changes? Or is it the opposite: the return that causes traders to place orders

in the same direction? Or is it a common factor that drives both? I first look at reverse

causality and then address the common factor interpretation.

If there is reverse causality, and the price change stimulates traders to place orders in the

same direction, the traders need a little time to observe the price change before they can trade

on it. So by looking at high enough frequency, we should find that past returns are correlated

positively with future orders. With one day horizon, the coefficients are insignificant. In

Table 13, with a time interval of 30 min., the order flow is indeed correlated with past return,

but with a negative coefficient: people provide liquidity and sell the stock when the price

has previously moved up. This is the opposite of what reverse causality requires, and we can

reject this interpretation.

Now suppose there was a common factor that prompted people to buy, as the same time

as it triggered the “market makers30” to push the price upward. This factor is exactly what

the literature usually labels public information: something that everyone knows at the same

time, so that investors and market makers all react to it simultaneously, without some having

an informational advantage over others.

But public information is studied in detail by French and Roll (1986) as I report in the

30There are no official market makers on the Paris Bourse but some brokers providing liquidity at the bid
and ask price can play the same role.
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rt−1 Mktt−1 Sprdt−1 Bkt−1 R̄2

Mktt -0.66 0.32 0.08 0.08 8.8%
(z-stat) (-4.7) (14.4) (3.6) (5.4)
Sprdt -0.32 0.02 0.19 0.04 4.1%
(z-stat) (-6.1) (3.3) (12.6) (4.8)
Bkt -0.32 -0.03 0.03 0.31 8.9%
(z-stat) (-3.6) (-2.4) (1.5) (18.4)

Table 13: No reverse causality, the 30 min. order flow regressed on lagged return and order flow.
I regress the different order flows on past return and order flows. I distinguish between different urgencies, and

aggregate using the SQRT function (SQRT =
∑

i∈buy orders

(vi)
0.5−

∑

i∈sell orders

(vi)
0.5). I report the coefficients,

the R̄2 and the z-stat obtained from the quantiles of block bootstrap replications. The results are averaged across

all 34 stocks.

Introduction. They show that public information explains only a small part of stock returns,

less than 15% of their variance. But the order flow explains 50% of the return variance (the

R2 of return on order flow). Therefore, the part of the return which is driven by the order

flow cannot be entirely due to public information. For the same reason, the order flow itself

cannot be entirely due to public information. In brief, public information, since it explains

only little of the price changes, cannot explain both large price changes and the order flow

which moves with them. So public information, the common factor that could have driven

both the price and orders, does not appear to do so.

Now that I have verified that there is neither reverse causality from prices to orders, nor

a common factor driving both, it is justified to think in causal terms from orders to price,

and to speak of the “price impact of an order,” which I used anticipatively above. In the

remainder I distinguish two sources for causal impacts, private information and mechanical

price pressure.

5.2 Private Information

A causal impact of orders is what one would expect from a private information model, such

as the model of Kyle (1985). A market maker31 will adjust prices to any order, whether it

is informed or not, because he cannot distinguish between them. This model also predicts

31Although there is no official market maker on the Paris Bourse, it is reasonable to assume that some
rational “liquidity providers” play a similar role.
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the observed direction of the impact.

The second causal interpretation which I consider is mechanical price pressure, de-

scribed in detail in the next section. A third alternative type of explanation is proposed

by Wang (1994), Vayanos (1999) and Evans and Lyons (2000). In these models, investors

have private information on their own demand for shares, which vary due to an exogenous

endowment, private investment opportunities, or risk aversion. These models are very sim-

ilar to mechanical price pressure, except that they give justifications for the noise trades.

Indeed, even noise traders with absolutely no information about the financial assets know

before the others what order they’re going to submit. So I do not distinguish these models

from uninformed price pressure.

Although private information à la Kyle is certainly part of what is happening, it is

possible that direct price pressure is important as well. Since mechanical price pressure is

not as widely accepted as private information, I describe in the next section how it can exist

in a well-arbitraged market, as well as the long run implications of price pressure, market

bubbles.

5.3 Mechanical price pressure

Here I look in more detail at how orders could mechanically move the price, even if they

do not contain private information. In the case of a market maker, Stoll (1978) has shown

how inventory considerations could induce the market maker to move the price when he is

faced with an order flow imbalance. However, as I have mentioned, with a market maker

who regularly clears his inventory, the order flow32 has to be balanced (since the market

maker takes the opposite side of each trade and clears his inventory regularly). Although

the imbalance probably exists from the point of view of participants, it is hard to measure

their unrealized wishes, i.e. the true imbalance.

I therefore turn to the case of the limit order market, where it is possible to measure the

imbalance, and where I reported it is highly correlated with price changes. For this type

of market, it is clear that big market orders have a short term mechanical impact on the

32Defined here, with transactions instead of orders, as the volume of buyer-initiated transactions minus
the volume of seller-initiated transactions.
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Buy Sell
€99 (10 shares) €101 (10shares)
€98 (30 shares) €102 (10 shares)
€97 (20 shares) €103 (40 shares)

Table 14: Example, the order book before a market buy order arrives.

price, as we can see in the following example. Let’s assume that the order book is given

by Table 14, when a buy market order of 40 shares is submitted. It matches the book at

€101, €102 and buys 20 shares at €103. The new ask price is €103. The mid-quote has

gone up from €100 to €101. What a believer in information efficiency would argue is that

this impact is only temporary, unless the order was informed. But this presupposes that

some arbitrageurs will bring the price back to its “normal” value. The incentives for the

arbitrageurs to do so may not be high enough: the price will indeed one day come back to its

efficient value but the arbitrageur may need to wait a long time and face huge price changes

in between. Therefore, the short term impact may take some time to disappear: Table 12

suggests that the impact has not disappeared at the three month horizon.

This price pressure framework explains naturally how market orders can move the price.

As for the impact of limit orders, it is indirect: because sell limit orders provide additional

liquidity on the sell side, a buy market order will have a smaller positive price impact. In

my example, if someone places a limit sell order of 40 shares at €101, the market buy order

will result in a transaction price of only €101 and a mid-quote of only €100. So it prevents

the market order from moving the mid-quote up to €101. Therefore, sell limit orders have

an indirect negative impact on the price.

I now propose a very simple model of how orders would affect the long term price with

mechanical price pressure. Limit orders provide liquidity, whereas market orders demand

liquidity. However, both can have a mechanical impact on the price as described above. To

understand the implications of price pressure, I do not model the endogenous choice between

liquidity demand and supply, that is market vs. limit orders33. Instead, I assume that all

orders have the same impact on the price: buy orders push the log-price by +λ and sell

33Implicitly, I assume that there are enough sell limit orders to provide liquidity for the buy market orders
to avoid market breakdowns, and the other way around for sell market orders.
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orders by −λ. I also assume that the direction of the order is distributed randomly buy or

sell, with an iid Bernoulli distribution, like flipping a coin.34 If there are Nt orders between

time 0 and t, the log-price change can be written:

pt − p0 = λ
∑

i≤Nt

εi

where εi = +1 for a buy order and −1 for a sell order.

This simple model predicts that the log price follows a random walk, thanks to the

Central Limit Theorem. This result, which is often attributed to information, also ensues

naturally from a price pressure model. Moreover, this price pressure model predicts that the

log-price will follow a random-walk in transaction time35 and not in physical time, as has

been empirically documented by Ané and Geman (2000).

Finally, this random-walk result has important implications for the behavioral literature.

It shows that behavioral traders can have an impact even if they are not systematically in the

same direction: random orders will not perfectly cancel each other. Instead, this imperfect

cancellation produces a random walk as I have described above. So one does not need a

systematic crowd behavior to move stock prices. Random trades will do just as well36.

This model is very simplistic. Among other things,37 it predicts that prices deviate

34Again, this is a simplification, because the order flow is autocorrelated. However, the part of the order
flow that is predictable has no impact on the price, because of statistical arbitrage, as reported in Table 10.
So what I model here is the unpredictable part, which is reasonably well described by the iid distribution.

35In this simple model, the distinction between market orders (which produce a transaction) and limit
orders (which do not) is blurred. Empirically, however, the intensity of limit and market order submission
are very correlated, so that the result of Ané and Geman (2000) would probably extend with order time
instead of transaction time.

36In fact, since the fraction of the order flow which is predictable has nearly no impact on the price, a
systematic and arbitrageable crowd behavior could have only a small impact when it happens, the rest being
already taken into account, if profitable, by arbitrageurs.

37In this simple model, I have only considered one asset (the stock market). However, my empirical results
show that the price pressure also works for each stock individually. Price pressure is harder to model in this
case, because risk averse “arbitrageurs” can build portfolios with apparently very high Sharpe ratios, and
therefore remove a big fraction of the mispricing even with a relatively small fraction of the global wealth.
Indeed, an “arbitrageur” could invest in a long/short portfolio, which removes the market component of risk,
and diversify the idiosyncratic risk. However, there are several difficulties in following this strategy. First,
this long-short portfolio will be heavily loaded in the book-to-market factor of Fama and French (1993). So
it is in fact risky. As a tentative explanation of where this factor comes from, it could be created by the
trading of these “arbitrageurs” themselves when they get or lose money: as they invest in and out of their
long/short portfolio, they move stocks by price pressure. This moves the price of the undervalued stocks
together and in the opposite direction of the overvalued stocks (which they have in short position). Second,
there is a lot of uncertainty in the distribution of future returns. The true fundamental value is difficult
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infinitely from fundamentals.38 To be more realistic, we need to assume that some rational

arbitrageurs are ready to short the market when it is grossly overvalued and leverage their

investment in the stock market when it is undervalued instead. This will create a dividend

yield effect in the time series, as reported by Fama and French (1988), as well as the long term

mean-reversion reported by Poterba and Summers (1988). When prices are high relative to

fundamentals, they come back down. When they are low, they come back up. This pattern

is consistent with observed stock market bubbles, such as the March 2000 Internet bubble,

arguably driven by an irrational enthusiasm from uninformed investors for technology stocks.

5.4 Implications of Private Information for the Market Portfolio

Several results already reported in the paper suggest that price pressure might play a role

in addition to that of private information. For example, mechanical price pressure would

explain why book orders have an important role for price changes, although they are probably

rarely used by privately informed traders. It would also explain why orders placed during

periods of little liquidity have a larger impact39 than when they are placed in periods of

great liquidity, as reported in Table 4.

In this section I propose a more direct way to address the private information interpre-

tation, by varying the level of private information that one expects to find in different assets

or portfolios. To have very different levels of information asymmetry, I distinguish between

company-specific returns and market-wide returns. Whereas there is a lot of potential for

leakage at the company level (the CEO, key employees, managers, their family and friends,

inquisitive analysts or fund managers etc.), it is difficult to find much potential for leakage

at the market level. It therefore seems likely that only a small fraction of market movements

to estimate (a high price relative to book value could signal a growth company as well as an overvalued
company). And the true time-varying covariance structure with many assets is also hard to estimate, which
makes diversification harder. So even without the book-to-market factor, it would be difficult to build a very
high Sharpe ratio portfolio without a good knowledge of the expected return and the covariance matrix.

38The cumulative imbalance between supply and demand can go to infinity over time, because it is an im-
balance in submitted orders, not in realized transactions. So not even the total number of shares outstanding
is a limit.

39Of course, a private information explanation would be that privately informed traders cannot delay
their trades and have to trade at times of low liquidity, whereas uninformed traders can delay their trades.
However, the frequency of order arrival hardly changes among the liquidity quintiles.
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should be driven by private information.40

rmt = km1 + λmfmt + ξmt (2)

ridio
it = ki1 + λidio

i f idio
it + ξit (3)

The first idea is that not all orders need to move one stock’s price similarly. The notations

are rmt for the market portfolio’s return, ridio
it for the idiosyncratic part of stock i’s return,

fmt for the market order flow imbalance, and f idio
it for the idiosyncratic order flow imbalance

(I define these two flows empirically below). Equations 2 and 3 suggest that not all orders

placed on stock i need to have the same impact λi.

To clarify the private information interpretation, I rely on Kyle (1985). In this model,

there is a rational risk-neutral informed trader, a rational risk-neutral uninformed market

maker, and some noise traders. The main result for our concern is that the market maker

will move the price when he receives an order flow imbalance:

∆P = λ (vbuy − vsell) (4)

In the simplest setting of Kyle’s model (single auction),

λ = 1/2
σinfo

σnoise

where σnoise measures the volume of noise trading and σinfo measures the information asym-

metry between the informed trader and the uninformed market-maker.

Since the information asymmetry is higher on the idiosyncratic part (σinfo higher), one

could imagine that orders placed on specific stocks, f idio
it , would have a larger impact than

orders placed indiscriminately on all stocks simultaneously, with λidio
i > λm. This inequality

is not verified empirically as both types of orders have the same impacts, which are statis-

40One could argue that leakage is not the only type of private information. A professional trader could
interpret public news better than other investors and have a temporary superior knowledge. However, the
stock market is highly competitive and the professional trader would need to use his superior interpretation as
quickly as possible. From the event study literature, it appears that full interpretation of public information
happens within one day of the announcement. However, the work of French and Roll (1986) includes one day
after the public information day. Therefore, their work excludes not only public information, but also this
special kind of private information which comes from a superior interpretation of public information.
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tically indistinguishable.41 However, the theoretical higher impact of idiosyncratic orders

depends on the importance of noise orders among idiosyncratic and market orders (σnoise).

If there are a lot of noise traders taking bets on specific stocks, instead of rationally avoiding

them (which they should do in order not to lose money to the informed traders), then σnoise

can be high for each stock and λidio
i low.

To avoid this ambiguity, I do not rely on the λ estimates but on the R2 of Equa-

tions 2 and 3. Within the strict Kyle model, there is no public information and all in-

formation arrives through orders. If the order flow were perfectly measured, the R2 when

regressing the return on the order flow would be 100%. But this model is a very simplified

one which we can extend to include public information. If this public information is incorpo-

rated directly into the price (without generating orders), the R2 on the order flow will not be

100%. Instead the R2 will correspond to the fraction of volatility due to private information

and the rest will be due to public information.

R2 =
σ2
private information
σ2
total information

In Equations 2 and 3, company specific returns should be driven more by private information

and have a large R2 whereas market-wide returns should be driven less by private information

and have a small R2.

I now build empirically the idiosyncratic and market order flows to be able to run Regres-

sions 2 and 3. I use 30 min. intervals to have more statistical power (16,878 observations)

and the SQRT aggregation.42 I start by aggregating and normalizing the three types of

orders for each company: I regress each stock’s return on its market, spread and book order

flow imbalance:

41Another way to find if market orders have a smaller impact than idiosyncratic orders is through the
regression rit = ki + λifit + λmfmt + ηit, which yields λi = 0.995 (std. err. 0.04) and λm = 0.02 (std.
err. 0.03) suggesting that market orders have neither a bigger (λm > 0) nor a smaller (λm < 0) impact
than other orders. However, the movements of other stocks have an impact on stock i. The regression
rit = ki + λifit + λmfmt + βirmt + ηit yields λi = 0.995 (std. err. 0.04), λm = −0.8 (std. err. 0.05) and
βi = 0.8 (std.err. 0.05) where fmt and rmt are equally weighted averages of the 33 other stocks. These
coefficients imply that market orders do not move stock i’s price (when taking into account stock i’s orders),
but that market movements unrelated to market orders do.

42Similar or even stronger results are obtained for the net number and the net volume of orders.
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rit = αi + λi,marketmarketit + λi,spreadspreadit + λi,bookbookit︸ ︷︷ ︸ + ηit

rit = fit + ηit

I call this ag-

gregate fit company i’s order flow imbalance. The reason for the aggregation is to simplify

the rest of this section, by having only one order flow variable per stock. This regression also

normalizes the λi coefficients to 1 for each stock, which allows simple comparisons between

modified λidio
i for different stocks and between the market λm and the modified λidio

i .

I then define the market return as the equally weighted return for the 34 stocks. Similarly,

I define the market order flow43 as the equally weighted order flow:

rmt =
1

N

N∑

i=1

rit

fmt =
1

N

N∑

i=1

fit

I then define the idiosyncratic return for stock i as the residual of stock i’s return after

regressing on the market return:

rit = θi + βirmt + ridio
it (5)

Similarly, the idiosyncratic order flow is the residual of stock i’s order flow after regressing

on the market flow:

fit = ϑi + bifmt + f idio
it (6)

I then regress the return on the order flow, for the market as a whole, and for the

idiosyncratic part of each stock, as described in Equations 2 and 3. Empirical results are

reported in Tables 15 and 16. As described earlier, one would expect large R2 for the

idiosyncratic return, where private information is important, and a smaller R2 for the market

return, where it is not. The result I find empirically is exactly the opposite: for each of the 34

stocks, the idiosyncratic R2 is smaller than the market R2 and this difference is economically

43I also used other definitions of market return and market order flow. For instance, I extracted the
principal component of the return and used the resulting eigenvector for both the return and order flow.
This alternative definition gave very similar results, as the principal component from the order flow did.
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λm R̄2
m

estimate 1.02 69.7%
(Std. Err.) (0.02) (0.9%)

Table 15: The market return regressed on the market order flow. I regress the 30 min. equally

weighted market return on the equally weighted order flow imbalance: rmt = km1 + λmfmt + ξmt. I report the

λm coefficient and the R̄2 corrected for the degrees of freedom. I also report the standard errors obtained from

the quantiles of block bootstrap replications. The aggregation of orders is done using the square root function:

SQRT=
∑

i (vi)
0.5. The order flow of each stock is also normalized so that for each, λi = 1, before distinguishing

idiosyncratic and market components.

λidio
i R̄2

i,idio

estimate 0.99 41.1%
(Std. Err.) (0.04) (1.7)%

Table 16: The idiosyncratic return regressed on the idiosyncratic order flow, averaged over
34 stocks. I regress the 30 min. idiosyncratic return (the residual after regressing on the equally weighted

market return) on the idiosyncratic order flow imbalance (the residual after regressing on the equally weighted

order flow imbalance): ridio
it = ki1 + λidio

i f idio
it + ξit. I report the λidio

i coefficient and the R̄2 corrected for the

degrees of freedom. I also report the 95% confidence interval obtained from the quantiles of block bootstrap

replications. The aggregation of orders is done using the square root function: SQRT=
∑

i (vi)
0.5. The order

flow is also normalized so that for each stock, λi = 1, before distinguishing idiosyncratic and market components.

The results are the average results over 34 stocks.
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and statistically highly significant, using block-bootstrapping.44

The results of Tables 15 and 16 can at first be surprising. Indeed, the λ coefficient is

the same for both regressions, but the R2 is higher for the market. In fact, the two results

are compatible if the variance of the market order flow is large relative to the variance of

the market return, which will happen if the market factor is more important for the order

flow than it is for the return. This pattern is what I observe empirically when regressing

Equations 5 and 6, i.e., the standard CAPM regression for the return and the equivalent

for order flow. The R2 of these regressions is a measure of the importance of the market

factor relative to the idiosyncratic component. In Equation 5 the average R2 for the return

is 24.9%, whereas it is 34.2% for the order flow in Equation 6.

The most striking result in Table 15 is that for the market portfolio, the R2 of return

on order flow is 70%, which, in absolute and economic terms, is extremely high. Economi-

cally, it seems far-fetched to argue that 70% of market-wide movements are due to private

information. Evans and Lyons (2000) also find an R2 around 70% for foreign exchange data,

where private information is similarly not well justified.

A useful benchmark to compare this 70% to can be found in Campbell (1991). There,

he finds that only one third to one half of total market movements are due to fundamental

news, whereas one half to two thirds are due to temporary, mean-reverting movements.

This implies that the 70% driven by the order flow cannot all be permanent and driven by

fundamental information about the asset (70% > 50%). This suggests that orders are indeed

generating mean-reverting price changes, more often called bubbles.

44The lower R2 for the idiosyncratic than the market returns suggest a lower fraction of private information
movements for idiosyncratic returns. However, another possible reason for the small R2 on idiosyncratic
orders could be that this regression is more misspecified. Indeed, let’s assume for now that orders have
widely time-varying impacts. Then a fixed λ will create a lower R2 than should be found with a perfect
model. If, moreover, these time-varying λ average out for the market portfolio, and if a fixed λ is a better
approximation for the market portfolio, then the R2 of Equation 2 will be less underestimated than for
Equation 3. And the idiosyncratic R2 could be lower just due to model misspecification. For this reason, I
emphasize not the low R2 of the idiosyncratic regression, but the high R2 of the market regression, which is
a lower bound of what a perfect statistical model would provide.
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6 Conclusion

In this paper, I first explain how there can be an imbalance in supply and demand for financial

assets, as soon as one considers not only realized transactions, but also unrealized wishes

using limit order data. Building on this observation, I construct a new measure of order

flow imbalance that also takes into account the concavity of the price impact as a function

of an order’s volume. This order flow measure is highly correlated with contemporaneous

price changes, with R2 around 50%. Besides, part of the order flow is predictable, but the

predictable part has nearly no impact on the price, as one would expect from a well arbitraged

market. I do not find any short term reversal of this price impact, which is observed for very

different time horizons, from the micro-scale ten minutes to the macro-scale three months.

I then attempt to provide an economic interpretation of the co-movement of the order

flow imbalance with price changes. I first establish the causality from orders to price changes.

I refute the first alternative, reverse causality, by observing that orders follow price changes

of the opposite direction instead of the same. In the second alternative, a common factor

driving both orders and prices would be part of public information and is not compatible

with the work of French and Roll (1986). I then stress two possible causal interpretations

of the price impact, one based on private information, and the other based on mechanical

price pressure. Although private information is certainly part of the reason why orders

affect the price, I argue that price pressure could be present even for uninformed orders and

propose a simple model for the implications of price pressure on the price, where stock prices

follow a random walk in transaction time as empirically observed by Ané and Geman (2000).

Uninformed price pressure would also produce bubbles driving the price away and back to

its fundamental value, as was arguably observed in the March 2000 Internet bubble.

The main argument in favor of price pressure comes from the distinction between market

return and idiosyncratic return. More precisely, one would expect only a small fraction of

market-wide movements to be driven by private information, since there is little information

asymmetry about the whole market. However, the R2 of return on orders is 70% for the mar-

ket returns, significantly higher than the 41% obtained for idiosyncratic returns. Therefore,

private information does not seem to be the only reason for the co-movement. Furthermore,

70% is higher than the upper bound (50%) of market movements that Campbell (1991) finds
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can be attributed to fundamental news about the assets, the rest being driven by mean-

reversion. This suggests that orders are indeed generating mean-reverting price changes,

more often called bubbles.

This research hints at several possible directions for a better understanding of price

pressure. A first one would be to get quantitative estimates of what is due to private

information as opposed to uninformed price pressure. Another one would be to understand

better bubbles and crashes, with behavioral explanations such as unrealistic optimism or

infectious panic that could create for a long time an excess of demand or supply and move

prices far away from fundamentals, as was arguably the case with the March 2000 Internet

bubble.
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