MQL4 COURSE

By Coders’ guru
www.forex-tsd.com

-1-
WELCOME

Welcome to the MQLA4 course.

In this series, I will try to strip the mystique and confusion from MQL4 by giving you
comprehensive tutorials with a straight forward example.

In this series of lessons, I will show you how to use the MQLA4 for building your own
Expert Advisors, Custom Indicators and Scripts.

If you are programming in C (or its superset C++) then you know a lot of MQL4 before
even I start my lessons, if you didn’t write in any programming language before, no
problem, I’ll guide you to understand the concept of programming in general as well.

So, let’s start from the beginning.

MQL4? What, Why and Where?

MQL4 stands for MetaQuotes Language 4.

MetaQuotes is the company who built the MetaTrader Trading Platform.

And to make it stronger than the other trading platforms the company extended it by a
built-in programming language that enables the user (you) to write his own trading
strategies.

The language enables you to create one of the following:

1- Expert Advisors.
2- Custom Indicators.
3- Scripts.

e Expert Advisor is a program which can automate trading deals for you. For
example it can automate your market orders, stops orders automatically,
cancels/replaces orders and takes your profit.

e Custom Indicator is a program which enables you to use the functions of the
technical indicators and it cannot automate your deals.

e Script is a program designed for single function execution.
Unlike the Advisor, scripts are being held only once (on demand), and not by
ticks. And of course has no access to indicator functions.

These were “What” MQL4 is? “Why” to use MQL4?
Now, “Where” do I write MQL4?

To write your MQL4 code and as anything else in world, you can choose one of two
ways, the hard way and the easy way.

1- The hard way
The hard way is using your favorite text editor and the command prompt to compile your
program.
Notepad is not bad choice, but do not forget two things:
1- To save the file you have created in plain text format.
2- To save the file as .mp4 (that’s to be easy to reopen it with Metaeditor), but you
can save it as any extension you prefer.

After saving your program there is an extra step to make your code comes out to the light.
It’s the Compiling step.

Compiling means to convert the human readable script that you have just wrote to the
machine language that your computer understands.

MetaTrader has been shipped with its own compiler (the program which will convert
your script to the machine language) called MetaLang.exe.

Metalang.exe is a console program which takes 2 parameters and output an .ex4 file (the
file which Metatrader understands).

The first parameter is “options” parameter and the only option available is —q quit

The second parameter is the full path to your .mql file.

The syntax will be in this format.
metalang [options...] filename

Example

1- Find your metalang.exe path, it will be the same path of MetaTrader (here my
path 1s D:\Program Files\MetaTrader 4)

2- Create a batch file and name it compile.bat (or any name you prefer).

3- Write these lines into the bat file then save it.
cd D:\Program Files\MetaTrader 4
metalang -q "D:\Program Files\MetaTrader 4\my first mql4 script.mg4"
(Don’t forget to change the path to you MetaTrader installed path)

4- Run the batch file and if you are lucky person like me you will get a screen like
this.

D:AWINDOWS\System32kcmd. exe
Microsoft Windows XP [Uersion 5.1.268081
CC» Copyright 1985-2001 Microsoft Corp.
D:~>"De~Program FilessMetalrader 4 conmpile.hat"
D=»>Cd D:sProgram FilessMetalrader 4

D=~Program FilessMetaTrader 4> MetalLang “D:“Program FilessMetalrader 4 my_first_m
gl4d_script.mgd'

MetalQuotes Language 4 compiler wversion 4.80 build 183 <84 Oct 280853

opuright 2001-2005, MetaQuotes Software Corp.

iCollectTokens: 2848 MglToken [624 Khl. used 542 MglToken [size: 312 huytesl
Exp file ""D:“Program Files“HMetaTrader 4my_first_mgld script.ex4" produced — B e
rroriz?,. B warningis>

D:sProgram FilessMetaTrader 4>

Figure 1 Metalang compiler

As you see you will get the output file “my_first mql4 script.ex4”

2-The easy way
Metatrader has been shipped with a good IDE (integrated development editor) called
MetaEditor which has these features:

1- A text editor has the feature of highlighting different constructions of MQL4
language while you are writing/reading code.

2- Easy to compile your program, just click F5 and the MetaEditor will make all the
hard work for you and produces the “ex4” file.
Besides it’s easy to see what the wrong in your program is (in the Error Tab — see
figure 2).

3- Built-in a dictionary book which you can access by highlight the keyword you
want to know further about it then press F1.

& MetaEditor - [MACD Sample.mg4]

@ File Edit “iew Toolz ‘wWindow Help

EEIEI e R e s | B o § temne | @
If',.-"+— —— | .] x
| Mo @ Cickionaty)
S8 Copyright @ 2005, Metaguotes S

£

extern double
extern double
extern double
extern double
extern double
extern double

S MOL4 quick reference

2 HEER: /£ f v 10e! 2 Account Information
i e e e e e e e e S e e e

TakeProfit = 50;
Lots = 0O.1;
Trailing2top = 30;
MACDOpenLevel=3;
HACDC loselewvel=2:
HaTrendPeriod=Za;:

= 4@ Back Ep forward g Home @3 Syne 20 MNext St Previous '

5@ Array Functions

[+ @ Common Functions

}__. {} Conversion Functions
[2 Custom Indicator Function
#-422 Dake & Time Functions
[+ "3:33;. File Functions

| e zlobal Yariables Functions
| | Fies [Dictionary | Search |

¥

]
Meta(Juotes Language 4 _
MOL4 quick reference E
Account Information
o Array Functions
Common functions e

I . Errors: | FindinFiles | Help

Help pages panel

Lnl, Call ;

In the coming lessons we will know more about MetaEditor.

Figure 2 MetaFditor 4

Today I just came to say hello, tomorrow we will start the real works.
Tomorrow we will study the Syntax of MQL4?

I welcome very much the questions and the suggestions.

See you
Coders’ Guru
19-10-2005

MQL4 COURSE

By Coders’ guru
www.forex-tsd.com

-
SYNTAX

I hope you enjoyed the “Welcome” lesson which tried to answer the very basic
questions; what MQL4 is, why MQL4 and where (to write) MQL4?

Always the biggest and the most important question(s) are how, and the entire coming
lessons are the answer.

Now, I want you to empty your mind from any confusion and read carefully the next few
concepts.

We are talking today about the SYNTAX rules of MQLA4.

And as I told you before, If you are programming in C (or its superset C++) then you
know a lot of MQL4 before even I start my lessons.

That’s because the syntax of MQL4 is very like of the syntax of C.

The dictionary means of the word SYNTAX of a programming language is:
“The set of allowed reserved words and their parameters and the correct word order in
the expression is called the syntax of language . “Wikipedia”

So, when we are studying the syntax of the language we are studying its grammar and
writing rules which consist of:

e Format
e Comments
o Identifiers

e Reserved words

Let’s slice the cake.

1- Format:
When you write your code, you can freely use any set of spaces, tabs and empty lines
you want to separate your code and your line of code to make them readable and eyes

pleasing.

For example all of these lines are valid in MQLA4:

double MacdCurrent, MacdPrevious, SignalCurrent;

double
MacdCurrent,
MacdPrevious,
SignalCurrent;

double MacdCurrent, MacdPrevious, SignalCurrent;

But, as you see, the first line is more readable and easy to understand.

And as everything in the world there are exceptions to the rule:

1- You can’t use new line in the “Controlling compilation”

You will know more about “Controlling compilation” in next lesson but just

remember this is an exception.

For example the next line of code is invalid and the MQL4 compiler will complain:

#property
copyright "Copyright © 2004, MetaQuotes Software Corp."

This is the valid “Controlling compilation™:

#property copyright "Copyright © 2004, MetaQuotes Software Corp."

2- You can’t use new line or space in the middle of Constant values, Identifiers or
Keywords.

For example this line is valid:

extern int MA_Period=13;

“extren” and “int” here are Keywords , “MA Period” is an Identifier and “13” is a
Constant value..
You will know more in the next lessons.

For example the next lines are invalids:

extern int MA_Period=1
3 .

9

extern int MA_Period=1 3;
Notice the tab between 1 and 3.

ex

tern int MA_Period=13;

2- Comments:

To make the programming world easier, any programming language has its style of
writing comments.

You use Comments to write lines in your code which the compiler will ignore then
but it clears your code and makes it understandable.

Assume that you write a program in the summer and in the winter you want to read it.
Without comments -even you are the code’s creator- you can’t understand all these
puzzled lines.

MQLA4 (& C/C++) uses two kinds of comments styles:
1- Single line comments

The Single line comment starts with “//” and ends with the new line.
For example:

//This 1s a comment
extern int MA_Period=13;

extern int MA_Period=13; //This is another comment

2- Multi-line comments

The multi-line comment start with “/*” and ends with “*/”.

And you can comment more than line or more by putting “/*” at the start of the first
line, and “*/” at the end of the last line.

For example:

/* this
1S
multi

line
comment*/

You can also nest single line comment inside multi lines comment like that:

/* this
1S

multi //another comment nested here.
line
comment*/

This 1s a valid comment too:

extern int /*HELLO! I'm a comment*/ MA_Period=13;

But this 1s invalid comment:

extern int //test MA_ Period=13;

3- Identifiers:
An identifier is the name you choose to your variables, constants and functions.

For example MA_Period here is an identifier:

extern int MA_Period=13;

There are few rules and restrictions for choosing those names:
1- The length of the Identifier must not exceed 31 characters.
2- The Identifier must begin with a letter (capital or small) or the underlining symbol

So, it can’t be started with a number or another symbol except the underlining
symbol.

3- You can’t use any reserved words as an Identifier.
You will see the list of the reserved words too soon.

4- The 1dentifiers’ names are case sensitive.
So, MA_ PERIOD not the same as ma_period or MA_Period

Let’s take some examples:

Namel Valid

_Namel Valid

1Name Invalid (don’t start with number)

~Namel Invalid (you can only use underline symbol)
N~amel Invalid (you can only use underline symbol)

i love my country and my country loves all the world
Invalid (you can’t exceed the 31 characters length)
Color Valid
color Invalid (you can’t use reversed word, and color is one of them)

4- Reserved words:

There are “words” which the language uses them for specific actions.

So, they are reserved to the language usage and you can’t use them as an identifier
name or for any other purpose.

This is the list of the reserved words (from the MQIL 4 guide):

Data types Memory classes Operators Other
bool extern break false
color static case true
datetime continue

double default

. swith

For example the next lines of code are invalid:

extern int datetime =13;

int extern =20;
double continue = 0;

I hope you enjoyed the lesson.
The next lesson will be about the “Data Types”.
So, Be Ready, the real hard work is coming!

I welcome very much the questions and the suggestions.
See you

Coders’ Guru
20-10-2005

MQL4 COURSE

By Coders’ guru
www.forex-tsd.com

-3-
DATA TYPES

Welcome to my third lesson in my MQL4 course.

I hope you enjoyed the “SYNTAX” lesson, which tried to give you the answers for:
¢ What format you can use to write MQL4 code?
o How to make the world better by commenting your code?

What the Identifiers are, and what are the rules of choosing them?

What are the MQL4 Reserved words?

If you didn’t read the “SYNTAX” lesson please download it from here:
http://forex-tsd.com/attachment.php?attachmentid=399

And you can download the “Welcome” lesson from here:
http://forex-tsd.com/attachment.php?attachmentid=372

Don'’t forget to login first.

Now, let’s enjoy the DATA TYPES.

What’s the Data type mean?

Any programming language has a set of names of the memory representation of the data.
For example if the memory holds numbers between -2147483648 to 2147483647, the
most of the programming languages will name this data as “Integer” data type.
Variables?

Variables are the names that refer to sections of memory into which data can be stored.

To help you think of this as a picture, imagine that memory is a series of different size
boxes. The box size is memory storage area required in bytes.

e In order to use a box to store data, the box must be given a name; this process is
known as declaration.

e In the declaration process you use a word tell the computer what’s the kind and
size of the box you want to use, this word known as keyword.

o Ithelps if you give a box a meaningful name that relates to the type of
information which make it easier to find the data, this name is the variable
constant.

e Data is placed into a box by assigning the data to the box.

e When we set the value of the box you have created in the same line you declared
the variable; this process is known as initialization.

When we create a variable we are telling the computer that we want him to assign a
specified memory length (in bytes) to our variable, since storing a simple number, a letter
or a large number is not going to occupy the same space in memory, so the computer will
ask us what’s the kind of data and how much the length of the data? That is the Data type
for.

For example if we said this line of code to the computer:
int MyVaraible=0;

That’s mean we are asking the computer to set a block of 4 bytes length to our variable
named “MyVaraiable”.

In the previous example we have used:
int < Keyword

int < Integer data type.

int < Declaration

MyVaraible €< Variable’s constant.
=0 < Initialization

We will know more about variables in a coming lesson.

In MQLA4, these are the kinds of Data types:

o Integer (int)

e Boolean (bool)

e Character (char)

e String (string)

o Floating-point number (double)
e Color (color)

e Datetime (datetime)

1- Integer

An integer, is a number that can start with a + or a - sign and is made of digits. And
its range value is between -2147483648 to 2147483647.
MQLA4 presents the integer in decimal or hexadecimal format.

For example the next numbers are Integers:

12,3, 2134, 0, -230
0x0A, 0x12, 0X12, 0x2f, 0xA3, 0Xa3, 0X7C7

We use the keyword int to create an integer variable.

For example:

int intInteger = 0;
int intAnotherIntger = -100;
int intHexIntger=0x12;

Decimal and Hexadecimal:

Decimal notation is the writing of numbers in the base of 10, and uses digits (0, 1, 2,
3,4, 5, 6,7, 8and 9) to represent numbers. These digits are frequently used with a
decimal point which indicates the start of a fractional part, and with one of the sign
symbols + (plus) or — (minus) to indicate sign.

Hexadecimal is a numeral system with a base of 16 usually written using the symbols

0-9 and A-F or a—.
For example, the decimal numeral 79 can be written as 4F in hexadecimal.

Boolean

Boolean variable is a data type which can hold only two values, true and false (or
their numeric representation, 0 and 1). And it occupies 1 bit of the memory.

In MQLA4, false, FALSE, False true, TRUE and True are equals.

Boolean named like this in the honor of the great mathematician Boole George.

We use the keyword bool to create a boolean variable.

For example:

bool I = true;
bool bFlag = 1;
bool bBool=FALSE;

3- Character

MQL4 names this Data type “Literal ”.

A character is one of 256 defined alphabetic, numeric, and special key elements
defined in the ASCII (American Standard Code for Information Interchange) set.
Characters have integer values corresponding to location in the ASCII set.

You write the character constant by using single quotes (') surrounding the character.

For example:

lal , |$| , IZI

We use the keyword int to create a character variable.

For example:

int chrA ='A’;
int chrB ='$";

Some characters called Special Characters can’t present directly inside the single
quotes because they have a reserved meanings in MQL4 language.

Here we use something called Escape Sequence to present those special characters,
And that by prefixing the character with the backslash character (\).

For example:

intchrA ="\\'; //slash character
intchrB="n'"; //new line

This is the list of Escape Sequence characters used in MQLA4.

carriage return \r
new line \n
horizontal tab \t
reverse slash \\
single quote \'
double quote \"
hexadecimal ASCII-code \xhh

ASCII table

(nul) 0 0000 0x00 (sp) 32 0040 0x20 64 0100 0x40 96 0140 0x60
(soh) 1 0001 Ox01 ! 33 0041 0x21 65 0101 Ox41 97 0141 0x61
(stx) 2 0002 0Ox02 | " 34 0042 0x22 66 0102 0x42 98 0142 0x62
(etx) 3 0003 Ox03 | # 35 0043 0x23 67 0103 0x43 99 0143 0x63
(eot) 4 0004 0x04 | $ 36 0044 0x24 68 0104 0x44 100 0144 Oxo64
(enq) 5 0005 0x05 | % 37 0045 0x25 69 0105 0x45 101 0145 0x65
(ack) 6 0006 0Ox06 | & 38 0046 0x26 70 0106 0x46 102 0146 0x66
(bel) 7 0007 Ox07 | ' 39 0047 0x27 71 0107 0x47 103 0147 0x67
(bs) 8 0010 0x08 (40 0050 0x28 72 0110 0x48 104 0150 0x68
(ht) 9 0011 0x09 |) 41 0051 0x29 73 0111 0x49 105 0151 0x69
(nl) 10 0012 OxOa | * 42 0052 Ox2a 74 0112 Ox4a 106 0152 Ox6a
(vt) 11 0013 Ox0b | + 43 0053 0x2b 75 0113 0x4b 107 0153 O0x6b

N
~
o
o
ol
A
o
X

N
o

108 0154 0Ox6c
109 0155 Ox6d
110 0156 Ox6e
111 0157 Ox6f
112 0160 0x70
113 0161 0x71
114 0162 0x72
115 0163 0x73
116 0164 0x74
117 0165 0x75
118 0166 0x76
119 0167 Ox77
X 120 0170 Ox78
y 121 0171 Ox79
z 122 0172 Ox7a
{ 123 0173 Ox7b
|

}

(

1
N
5
o
o
ol
13,
o
<
N
o

S<C~"VW-OQTOSI X" ~"JTQ DO TO

COO~NOUINWNR O™~
ol
N
o
o
o
g
o
<
w
~

124 0174 Ox7c
125 0175 Ox7d
126 0176 Ox7e
del) 127 0177 Ox7f

>TTTNXXS<CHODBOTOZZIrRC"IOTMMUOT>Q
~l
©
o
|
|
~l
o
X
=

NV oI AT
»
N
o
o
\‘
»
o
x
w
@

4- String
The string data type is an array of characters enclosed in double quote ().
The array of characters is an array which holds one character after another, starting at
index 0. After the last character of data, a NULL character is placed in the next array

location. It does not matter if there are unused array locations after that.

A NULL character is a special character (represented by the ASCII code 0) used to
mark the end of this type of string.

See figure 1 for a simple representation of the string constant “hello” in the characters
array.

h & 1 1 o [HMOLL

Figure 1 — Characters array

MQL4 limits the size of the string variable to 255 characters and any character above
255 characters will generate this error: (too long string (255 characters maximumy)).

You can use any special character -mentioned above- in your string constant by
prefixing it with the backslash (V).

We use the keyword string to create a string variable.

For example:

string strl = "Hello world1, with you coders guru”;
string str2 = "Copyright © 2005, \"Forex-tsd forum\"."; //Notice the use of (") character.
string str3 = "1234567890";

Floating-point number (double)

Floating point number is the Real Number (that is, a number that can contain a
fractional part beside the integer part separated with (.) dot).Ex: 3.0,-115.5, 15 and
0.0001.

And its range value is between 2.2e-308 to 1.8e308.

We use the keyword double to create a floating-point variable.

For example:

double dbINumberl = 1000000000000000;
double dbINumber3 = 1/4;
double dbINumber3 =5.75;

6- Color

Color data type is a special MQL4 data type, which holds a color appears on the
MetaTrader chart when you create your own Expert Advisor or Custom Indictor and
the user can change it from the property tab of your Expert Advisor or Custom
Indictor.

You can set the Color variable constant in three ways:

1- By the color name: For the well know colors (called Web Colors Set) you can
assign the name of the color to the color variable, see the list of the Web Colors Set.

2- By Character representation (MQL4 named it this name): In this method you use
the keyword (C) followed by two signal quotations (‘). Between the two signal
quotations you set the value of the red, green and blue (know as RGB value of the
color). These values have to be between: 0 to 255. And you can write these values in
decimal or hexadecimal format.

3- By the integer value: Every color in the Web Colors Set has its integer value
which you can write it in decimal or hexadecimal format. And you can assign the
Integer value of the color to the color variable. The hexadecimal color format looks
like this: 0xXBBGGRR where BB is the blue value, GG is green value and RR is the
red value.

For example:

// symbol constants
C'128,128,128' // gray
C'0x00,0x00,0xFF' // blue
// named color

Red

Yellow

Black

// integer-valued representation
OxFFFFFF // white
16777215 // white
0x008000 // green
32768 // green

We use the keyword color to create a color variable.

For example:

color clrl=Red;
color clr1=C'128,128,128';

color clr1=32768;

Web Colors Set

|_SeaGreen | DarkGoldenrod | DarkSlateBlue | Sienna____| MediumBlue | Brown |-t DimGray |
|- - o | DarkViolet | _FireBrick | MediumVioletRed |MediumSeaGreen| Chocolate | _ Crimson | _SteelBlue |

- Goldenrod ~ MediumSpringGreen LawnGreen CadetBlue DarkOrchid OrangeRed
Orange Gold Yellow Chartreuse ~ Lime SpringGreen Aqua

PO Blue | cicoer | Red | Gray | SlateGray | PER | BlueViolet |
MediumTurquoise Turquoise DarkKhaki
[T I Mediumorchid ™ GreenYellow MediumAquamarine | Tomato | RosyBrown | |
DarkGray ~ SandyBrown Tan
BurlyWood _m Violet SkyBlue LightSalmon

Plum Khaki LightGreen Aquamarine Silver LightSkyBlue LightSteelBlue LightBlue
PaleGreen Thistle PowderBlue PaleGoldenrod PaleTurquoise LightGrey Wheat NavajoWhite
Moccasin LightPink Gainsboro PeachPuff Pink Bisque LightGoldenRod 'BlanchedAlmond
LemonChiffon Beige AntiqueWhite PapayaWhip Cornsilk LightYellow LightCyan Linen
Lavender MistyRose OldLace WhiteSmoke Seashell Ivory Honeydew AliceBlue
LavenderBlush MintCream Snow White

7- Datetime

Datetime data type is a special MQLA4 data type, which holds a date and time data.
You set the Datetime variable by using the keyword (D) followed by two signal
quotations (‘). Between the two signal quotations you write a character line consisting
of 6 parts for value of year, month, date, hour, minutes, and seconds. Datetime
constant can vary from Jan 1, 1970 to Dec 31, 2037.

For example:

D'2004.01.01 00:00' // New Year

D'1980.07.19 12:30:27'

D'19.07.1980 12:30:27'

D'19.07.1980 12 /lequal to D'1980.07.19 12:00:00'
D'01.01.2004' /lequal to D'01.01.2004 00:00:00'

We use the keyword datetime to create a datetime variable.

For example:

datetime dtMyBirthDay= D'1972.10.19 12:00:00";
datetime dt1=D'2005.10.22 04:30:00";

I hope you enjoyed the lesson.
The next lesson will be about the “Operations & Expressions”.

I welcome very much the questions and the suggestions.

See you
Coders’ Guru
22-10-2005

MQL4 COURSE

By Coders’ guru
www.forex-tsd.com

-4-
Operations & Expressions

Welcome to the fourth lesson in my course about MQLA4.
The previous lesson “Data Types” presented a lot of new concepts; I hope you understand
it, and above all you enjoyed it.

You can download the previous lesson from here:
http://forex-tsd.com/attachment.php?attachmentid=399
http://forex-tsd.com/attachment.php?attachmentid=372
http://forex-tsd.com/attachment.php?attachmentid=469
Don'’t forget to login first.

Now, let’s enjoy the Operations & Expressions.

What’s the meaning of Operations & Expressions?

You know the operations very well. If I told you that (+,-,*, /) are the basic arithmetical
operators, you will remember very fast what’s the operator means.

I hear you saying “OK, I know the operations; could you tell me what’s the meaning of
the expression?”

Identifiers (do you remember them? If not, Review the SYNTAX lesson) together with
the Operations produce the Expressions.

Puzzled? Let’s illustrate it in an example:

x = (y*z)/w;

x,y.z and w, here are identifiers.
=,* and / are the operators.
The whole line is an expression.

When the expressions combined together it makes a statement.
And when the statements combined together it makes a function and when the functions
combined together it makes a program.

In the remaining of this lesson we are going to talk about the kinds operators used in

MQL4.

So, let’s start with the basic arithmetical operators:

1- Arithmetical operators:

In MQLA4 there are 9 Arithmetical operations
This is the list of them with the usage of each:

Operator

+

%

R

Name

Addition operator

Subtraction operator

Sign changer operators

Multiplication operator

Division operator

Modulus operator

Increment operator

Decrement operator

Example

A=B+C;

Description

Add B to C and assign the result to
A.

Subtract C from B and assign the
resultto A.

Change the sign of A from positive
to negative.

Multiply B and C and assign the
resultto A.

Divide B on C and assign the result
to A.

A is the reminder of division of B
on C. (ex: 10%2 will produce 0,
10%3 will produce 1).

Increase A by 1 (ex: if A =1 make
it 2).

Decrease 1 from A (ex: if A =2
make it 1).

Note: The remainder operator works by dividing the first number by the second number
for the first integer results and then returns the remaining number.

For example:

10%5=0

This is because if you divide 10 by 5 you will get 2 and there no remaining value, so the
remainder is 0.

10%8=2

This is because if you divide 10 by 8 you will get 1 (1*8=8), so the remainder is (10-8 =

2).

100%15=10

This 1s because if you divide 100 by 15 you will get 6 (6*15=90), so the remainder 1s
(100-90=10).

What about 6%8?

It will be 6 because if you divide 6 by 8 you will get 0 (8*%0=0), so the remainder 1s (6-
0=6).

Note: You can’t combine the increment and decrement operator with other expressions.
For example you can’t say:

A=(B++)*5;
But you can write it like that:

A++;
B=A*5;

Note: How the above example works? Let’s assume:
int A=1; //set Ato1

int B;

A++; //increase A by 1, now A=2

B=A*5; //which means B=2%5

2- Assignment operators:

The purpose of any expression is producing a result and the assignment operators setting
the left operand with this result.

For example:
A=B*(C;

Here we multiply B and C and assign the result to A.
(=) here is the assignment operator.

In MQLA4 there are 11 assignments operations
This is the list of them with the usage of each:

Operator Name Example Description
= Assignment operator A =B; Assign B to A.
4 Additive Assignment A += B; It’s equal to: A=A + B; Add B to

operator A and assign the result to A.

%=

>>=

<<=

Subtractive Assignment

A -=B;
operators
Multiplicative A *=B:
Assignment operator ’
Divisional Assignment A/=B;
operator
Modulating Assignment A %= B;
operator
Left Shift Assignment A >>= B;
operator
Right Shift Assignment A <<= B;
operator
AND Assignment A &=B;
operator
OR Assignment A|=B;
operator
XOR Assignment A A= B;
operator

3- Relational operators:

It’s equal to: A = A - B; Subtract B
from A and assign the result to A.

It’s equal to: A = A * B; Multiply
A and B and assign the result to A.
It’s equal to: A = A/ B; Divide A
on B and assign the result to A.
It’s equal to: A = A % B; Get the

reminder of division of A on B and
assign the result to A.

It shifts the bits of A left by the
number of bits specified in B.

It shifts the bits of A right by the
number of bits specified in B.

Looks at the binary representation
of the values of A and B and does
a bitwise AND operation on them.

Looks at the binary representation
of the values of A and B and does
a bitwise OR operation on them.

Looks at the binary representation
of the values of two A and B and
does a bitwise exclusive OR
(XOR) operation on them.

The relational operators compare two values (operands) and result false or true only.
It’s is like the question “Is John taller than Alfred? Yes / no?”

The result will be false only if the expression produce zero and true if it produces any
number differing from zero;

For example:

4==4

4 <4,
4<=4

//true
//false

//true;

In MQLA4 there are 6 Relational operations
This is the list of them with the usage of each:

Operator Name Example Description

== Equal operator A == B; True if A equals B else False.
= R e — A 1= B; True if A does not equal B else
False.
< Less Than operators A <B; True if A 1s less than B else False.
S Gt Mhemsainr | AT True if A is greater than B else
False.
_ Less Than or Equal _ True if A is less than or equals B
<= A <=B;
operator else False.
_ Greater Than or Equal . True if A is greater than or equals
>= A >=B;
operator B else False.

4- Logical operators:

Logical operators are generally derived from Boolean algebra, which is a mathematical
way of manipulating the truth values of concepts in an abstract way without bothering
about what the concepts actually mean. The truth value of a concept in Boolean value can
have just one of two possible values: true or false.

MQL4 names the Logical operators as Boolean operators

MQL4 uses the most important 3 logical operators.
This is the list of them with the usage of each:

Operator Name Example Description

If either of the values are zero the
value of the expression is zero,
otherwise the value of the
expression is 1. If the left hand
value is zero, then the right hand
value is not considered.

&& AND operator A && B;

If both of the values are zero then
the value of the expression is 0
otherwise the value of the
expression is 1. If the left hand
value is non-zero, then the right
hand value is not considered.

I OR operator A || B;

! NOT operator 1A; Not operator is applied to a non-

zero value then the value is zero, if
it is applied to a zero value, the
value is 1.

5- Bitwise operators:

The bitwise operators are similar to the logical operators, except that they work on a
smaller scale -- binary representations of data.

The following operators are available in MQLA4:

Operator Name Example Description

Compares two bits and generates a
& AND operator A & B; result of 1 if both bits are 1;
otherwise, it returns O.

Compares two bits and generates a
result of 1 if the bits are
complementary; otherwise, it
returns 0.

| OR operator A | B;

Compares two bits and generates a

EACILITSINEHOIY A" B; result of 1 if either or both bits are

operator 1; otherwise, it returns O.
_ COMPLEMENT A Used to invert all of the bits of the
operator operand.
Moves the bits to the right,
The SHIFT RIGHT discards the far right bit, and

>> A >> B; assigns the leftmost bit a value of

operator 0. Each move to the right
effectively divides op1 in half.
Moves the bits to the left, discards

The SHIFT LEFT the far left bit, and assigns the

<< ator A << B; rightmost bit a value of 0. Each
operato move to the left effectively
multiplies opl by 2.

Note Both operands associated with the bitwise operator must be integers.

6- Other operators:

There are some operators which used in MQL4 and don’t belong to one of the previous
categories:

1- The array indexing operator ([]).
2- The function call operator (());
3- The function arguments separator operator -comma (,)

We will know more about the Arrays and Functions in the next lessons, so just
remember these 3 operators as “Other operators”.

Operators Precedence:

If you don't explicitly indicate the order in which you want the operations in a compound
expression to be performed, the order is determined by the precedence assigned to the
operators in use within the expression. Operators with a higher precedence get evaluated
first. For example, the division operator has a higher precedence than does the addition
operator. Thus, the two following statements are equivalent:

xty /100
x + (y / 100) //unambi guous, recomended

When writing compound expressions, you should be explicit and indicate with
parentheses () which operators should be evaluated first. This practice will make your
code easier to read and to maintain.

The following table shows the precedence assigned to the operators in the MQL4. The
operators in this table are listed in precedence order: The higher in the table an operator
appears, the higher its precedence. Operators with higher precedence are evaluated before
operators with a relatively lower precedence. Operators on the same group have equal
precedence. When operators of equal precedence appear in the same expression, a rule
must govern which is evaluated first. All binary operators except for the assignment
operators are evaluated from left to right. Assignment operators are evaluated right to
left.

() Function call From left to right
[l Array element selection

' Negation From left to right

~ Bitwise negation
- Sign changing operation

* Multiplication From left to right
/ Division
% Module division

+ Addition From left to right
- Subtraction
<< Left shift From left to right

>> Right shift

< Less than From left to right
<= Less than or equals

> Greater than

>= QGreater than or equals

== Equals From left to right
= Not equal

& Bitwise AND operation From left to right

A Bitwise exclusive OR From left to right
&& Logical AND From left to right
|| Logical OR From left to right

= Assignment From right to left

+= Assignment addition

-= Assignment subtraction

*= Assignment multiplication
/= Assignment division

%= Assignment module

>>= Assignment right shift
<<= Assignment left shift

&= Assignment bitwise AND
|= Assignment bitwise OR
A= Assignment exclusive OR

Comma From left to right

9

I hope you enjoyed the lesson.
I welcome very much the questions and the suggestions.

See you
Coders’ Guru
23-10-2005

MQL4 COURSE

By Coders’ guru
www.forex-tsd.com

-5-
Loops & Decisions
Part1

Welcome to the fifth lesson in my course about MQLA4.

You can download the previous lesson from here:
http://forex-tsd.com/attachment.php?attachmentid=399
http://forex-tsd.com/attachment.php?attachmentid=372
http://forex-tsd.com/attachment.php?attachmentid=469
http://forex-tsd.com/attachment.php?attachmentid=481
Don'’t forget to login first.

The normal flow control of the program you write in MQL4 (And in others languages as
well) executes from top to bottom, A statement by a statement.

A statement is a line of code telling the computer to do something.

For example:

Print(""Hello World"),

return 0;

A semicolon at end of the statement is a crucial part of the syntax but usually easy to forget,
and that's make it the source of 90% of errors.

But the top bottom execution is not the only case and it has two exceptions,
They are the loops and the decisions.

The programs you write like -the human- decides what to do in response of circumstances
changing. In these cases the flow of control jumps from one part of the program to another.
Statements cause such jumps is called Control Statements.

Such controls consist of Loops and Decisions.

LOOPS

Loops causing a section of your program to be repeated a certain number of times.
And this repetition continues while some condition is true and ends when it becomes false.
When the loop end it passes the control to next statement follow the loop section.

In MQL4 there are two kinds of loops:

The for Loop

The for loop considered the easiest loop because all of its control elements are gathered in
one place.
The for loop executes a section of code a fixed number of times.

For example:

int j;
for(j=0; j<15; j++)
Print(j);

How does this work?

The for statement consists of for keyword, followed by parentheses that contain three
expressions separated by semicolons:

for(j=0; j<15; j++)

These three expressions are the initialization expression, the test expression and the
increment expression:

j=0 < initialization expression

j<15 € test expression

J++ € increment expression

The body of the loop is the code to be executed the fixed number of the loop:
Print(j);

This executes the body of the loop in our example for 15 times.

Note: the for statement in not followed by a semicolon. That's because the for statement

and the loop body are together considered to be a program statement.

The initialization expression:

The initialization expression is executed only once, when the loop first starts. And its
purpose to give the loop variable an initial value (0 in our example).

You can declare the loop variable outside (before) the loop like our example:

int j;

Or you can make the declaration inside the loop parentheses like this:

for(int j=0; j<15; j++)

The previous two lines of code are equal, except the Scope of each variable (you will know
more about the variable declaration and scopes in the Variables lesson).

The outside declaration method makes every line in the code block to know about the

variable, while the inside declaration makes only the for loop to know about the variable.

You can use more that one initialization expression in for loop by separating them with
comma (,) like this:

inti;

int j;

for(1i=0 j=0;1<15;1++)
Print(1),

The Test expression:

The test expression always a relational expression that uses relational operators (please
refer to relational operators in the previous lesson).

It evaluated by the loop every time the loop executed to determine if the loop will continue
or will stop. It will continue if the result of the expression is true and will stop if it false.

In our example the body loop will continue printing i (Print(i)) while the case j<1S5 is true.
For example the j =0,1,2,3.4,5,6,7,8.9,10,11,12,13 and 14.

And when j reaches 15 the loop will stops and the control passes to the statement following
the loop.

The Increment expression:

The increment expression changes the value of the loop variable (j in our example) by

increase it value by 1.
It executed as the last step in the loop steps, after initializing the loop variable, testing the

test expression and executing the body of the loop.

Figure 1 shows a flow chart of the for loop.

Initialization
expression

TeSt. kCED
expression >
False

Body of loop

A

Increment
expression

Figure 1 - Flow chart of the for loop

Like the initialization expression, in the increment expression you can use more than one
increment expression in the for loop by separating them with comma (,) like this:

nti;

int j;

for(i=0 j=0;1<15,1<;i++,j++)
Print(1),

But you can only use one test expression.

Another notice about the increment expression, it’s not only can increase the variable of the
loop, but it can perform and operation it like for example decrements the loop variable like
this:

nti;
for(1i=15;1>0,1<;1--)
Print(1),

The above example will initialize the i to 15 and start the loop, every time it decreases i by
1 and check the test expression (i>0).
The program will produce these results: 15,14,13,12,11,10,9,8,7,6,5,4,3,2.1.

Multi statement in the loop body:

In our previous examples, we used only one statement in the body of the loop, this is not
always the case.
You can use multi statements in the loop body delimited by braces like this:

for(int 1=1;1<=15;1++)

{
Print(1),
PlaySound("alert.wav");

}

In the above code the body of the loop contains two statements, the program will execute
the first statement then the second one every time the loop executed.
Don’t forget to put a semicolon at the end of every statement.

The Break Statement:

When the keyword presents in the for loop (and in while loop and switch statement as
well) the execution of the loop will terminate and the control passes to the statement
followed the loop section.

For example:

for(int 1=0;1<15;1++)
{
if((1==10)
break;
Print(1);
}

The above example will execute the loop until i reaches 10, in that case the break keyword

will terminate the loop. The code will produce these values: 0,1,2.3,4,5,6,7.8.9.
The Continue Statement:

The break statement takes you out the loop, while the continue statement will get you back
to the top of the loop (parentheses).
For example:

for(int 1=0;1<15; 1++)
{
1f(1i==10) continue;
Print(1)
}

The above example will execute the loop until i reaches 10, in that case the continue
keyword will get the loop back to the top of the loop without printing i the tenth time. The
code will produce these values: 0,1,2.3,4,5,6,7.8,9,11,12,13,14.

Latest note:

You can leave out some or all of the expressions in for loop if you want, for example:
for(;;)

This loop is like while loop with a test expression always set to true.

We will introduce the while loop to you right now.

The while Loop

The for loop usually used in the case you know how many times the loop will be executed.
What happen if you don’t know how many times you want to execute the loop?
This the while loop is for.

The while loop like the for loop has a Test expression. But it hasn’t Initialization or
Increment expressions.

This is an example:

int 1=0;
while(i<15)
{
Print(1),
AR

9

In the example you will notice the followings:

e The loop variable had declared and initialized before the loop, you can not declare
or initialize it inside the parentheses of the while loop like the for loop.

e The i++ statement here is not the increment expression as you may think, but the
body of the loop must contain some statement that changes the loop variable,
otherwise the loop would never end.

How the above example does work?

The while statement contains only the Test expression, and it will examine it every loop, if
it’s true the loop will continue, if it’s false the loop will end and the control passes to the
statement followed the loop section.

In the example the loop will execute till i reaches 16 in this case i<l15=false and the loop

ends.

Figure 2 shows a flow chart of the while loop.

A 4

expression >
False

True

Body of loop

Figure 2 - Flow chart of the while loop

I told you before that the while loop is like the for loop, these are the similar aspects:

You can use break statement and continue in both of them.

You can single or multi statements in the body of the loop in both of them, in the
case of using multi statements you have to delimit them by braces.

3. The similar copy of for(;;) is while(true)

S

I hope you enjoyed the lesson.
I welcome very much the questions and the suggestions.

See you
Coders’ Guru
24-10-2005

MQL4 COURSE

By Coders’ guru
www.forex-tsd.com

-6-
Loops & Decisions
Part2

Welcome to the sixth lesson in my course about MQLA4.
I hope you enjoyed the previous lessons.

In the previous lesson, we have talked about the Loops.
And we have seen that the Loops are one of two ways we use to change the normal flow
of the program execution -from top to bottom. The second way is the Decisions.

Decisions in a program cause a one-time jump to a different part of the program,

depending on the value of an expression.
These are the kinds of decisions statements available in MQL4:

The if Statement

The if statement is the simplest decision statement, here’s an example:

if(x<100)
Print("h1"),

Here the if keyword has followed by parentheses, inside the parentheses the Test
expression (x < 100), when the result of test expression is true the body of the if will
execute (Print('"hi");) ,and if it is false, the control passes to the statement follows the if
block.

Figure 1 shows the flow chart of the if statement:

Test False
expression

True

Body of if

\ 4

Figure 1 - Flow chart of the if statement

Multi Statements in the if Body:

Like the loops, the body of if can consist of more than statement delimited by braces.

For example:

if(current price==stop_lose)

{

Print("you have to close the order");
PlaySound("warning wav");

Notice the symbol == in the Test expression; it's one of the Relational Operators you
have studied in the lesson 4, operations & expressions.

This is a source of a lot of errors, when you forget and use the assignment operator =.
Nesting:

The loops and decision structures can be basted inside one another; you can nest ifs

inside loops, loops inside ifs, ifs inside ifs, and so on.

Here's an example:

for(int1=2 ; 1<10 ; 1++)
1f(1%2==0)
{

Print("It's not a prime nomber"),
PlaySound("warning wav");

In the previous example the if structure nested inside the for loop.

Notice: you will notice that there are no braces around the loop body, this is because the
if statement and the statements inside its body, are considered to be a single statement.

The if...else Statement

The if statement let's you to do something if a condition is true, suppose we want to do
another thing if it's false. That's the if...else statement comes in.

It consist of if statement followed by statement or a block of statements, then the else
keyword followed by another statement or a block of statements.

Like this example:

if(current_price>stop_lose)

Print("It’s too late to stop, please stop!");
else

Print("you playing well today!");

If the test expression in the if statement is true, the program one message, if it isn’t true, it
prints the other.

Figure 2 shows the flow chart of the if...else statement:

Test False
expression

True

Body of if Body of else

\ 4

Figure 2 - Flow chart of the if..else statement
Nested if...else Statements

You can nest if.. . else statement in ifs statements, you can nest if. .. else statement in
if... else statement, and so on.

Like this:

if(current_price>stop_lose)

Print("It’s too late to stop, please stop!");
if(current_price==stop_lose)

Print("It’s time to stop!");
else

Print("you playing well today!");

There’s a potential problem in nested if... else statements, you can inadvertently match an
else with the wrong if.

To solve this case you can do one of two things:

1- you can delimited the if...else pairs with braces like this:

if(current_price>stop_lose)
{
Print("It’s too late to stop, please stop!");
if(current_price==stop_lose)
Print("It’s time to stop!");
else
Print("you playing well today!");
}

2- If you can’t do the first solution (in the case of a lot of if. .. else statements or you are
lazy to do it) take it as rule.
Match else with the nearest if. (Here it’s the line if(current_price==stop lose)).

The switch Statement

If you have a large decision tree, and all the decisions depend on the value of the same
variable, you can use a switch statement here.
Here’s an example:

switch(x)

{

case 'A":
Print("CASE A");
break;

case 'B"

case 'C"
Print("CASE B or C"),

break;

default:
Print("NOT A, B or C");
break;

}

In the above example the switch keyword is followed by parentheses, inside the
parentheses you’ll find the switch constant, this constant can be an integer, a character
constant or a constant expression. The constant expression mustn’t include variable for
example:

case X+Y: is invalid switch constant.

How the above example works?

The switch statement matches the constant x with one of the cases constants.
In the case x=="A" the program will print "CASE A" and the break statement will take
you the control out of the switch block.

In the cases x=="B' or x=="C", the program will print ""CASE B or C". That’s because
there’s no break statement after case 'B':.

In the case that x != any of the cases constants the switch statement will execute the
default case and print "NOT A, B or C".

Figure 3 shows the flow chart of the switch statement

switch variable
equals first
case constant

switch variable
equals second
case constant

switch variable
equals third
case constant

First case body

Second case body

Third case body

v

Default body

A 4

Figure 3 - Flow chart of the switch statement

I hope you enjoyed the lesson.

I welcome very much the questions and the suggestions.

See you
Coders’ Guru
25-10-2005

MQL4 COURSE

By Coders’ guru
www.forex-tsd.com

.7
Functions

Welcome to the world of MQL4 Functions.
The functions in any language take two phases:
Learning them which sometimes a boring thing.
Using them which always a lifeboat.

I want to tell you my traditional sentence:
I hope you enjoyed the previous lessons, which you can download them from here:

1- Lesson 1 - Welcome to the MQLA4 course.
http://www.forex-tsd.com/attachment. php?attachmentid=372
2- Lesson2 — SYNTAX.
http://www.forex-tsd.com/attachment. php?attachmentid=399
3- Lesson 3 - MQL4 Data types.
http://www.forex-tsd.com/attachment. php?attachmentid=469
4- Lesson 4 - MQL4 Operations & Expressions.
http://www.forex-tsd.com/attachment. php?attachmentid=48 1
5- Lesson 5- Loops & Decisions (Partl).
http://www.forex-tsd.com/attachment. php?attachmentid=504
6- Lesson 6 - Loops & Decisions (Part2).
http://www.forex-tsd.com/attachment. php?attachmentid=547

Let’s start the seventh lesson.

What’s the meaning of functions?

The function is very like the sausage machine, you input the meat and the spices and it
outs the sausage.

The meat and the spices are the function parameters; the sausage is the function return
value. The machine itself is the function body.

There’s only one difference between the functions and your sausage machine, some of
the functions will return nothing (nothing in MQL4 called void).

Let’s take some examples:

double // type of the sausage — return value
my_func (double a, double b, double ¢) // function name and parameters list (meat &
spices)

{

return (a*b + ¢); // sausage outs - returned value

j

As you see above, the function starts with the type of the returned value “double”
followed by the function name which followed by parentheses.

Inside the parentheses you put the meat and spices, sorry, you put the parameters of the
function.

Here we have put three parameters double a, double b, double c.

Then the function body starts and ends with braces. In our example the function body will
produce the operation (a*b + ¢).

The return keyword is responsible about returning the final result.

Return keyword:

The return keyword terminate the function (like the break keyword does in the loop), and
it gives the control to the function caller (we will know it soon).

The return keyword can include an expression inside its parentheses like the above
example return (a*b + ¢); and this means to terminate the function and return the result
of the expression.

And it can be without expression and its only job in this case is to terminate the function.

Notice: Not all the functions use the return keyword, especially if there’s no return value.
Like the next example:

void // void mean there’s no sausage — returned value.
my_func (string s) // function name and parameters list (meat & spices)

{
}

Print(s),

The function above will not return value, but it will print the parameter s you provided.
When the function has no return value you use “void” as the funciotn returns type.
These kinds of functions in some programming language called “Methods”, but MQL4
calling them functions.

Function call:

We know very well now what the function is (I hope)? How to use the functions in your
MQL4?

There’s an extra steps after writing your function to use the function in you program.
This step is calling it (using it).

Assume you have a function which collects the summation of two integers.
This is the function:

int collect (int first number, int second number)

{

return(first number+ second number);

}

You know how the previous function works, but you want to use it.

You use it like this:

inta=10;

intb=15;

int sum = collect(a,b);
Print (sum);

The example above will print 25 (is it a magic). But how did it know?

The magic line is int sum = collect(a,b); here you declared a variable (sum) to hold the
function retum value and gave the function its two parameters (a,b).

You basically called the function.

MQL4 when see your function name, it will take you parameters and go to the function
and 1t will return —soon- with the result and place them in same line.

It’s very like copying all the lines of the function instead of the place you called the
function in, easy right?

Nesting functions inside function:

You can nest function (or more) inside the body of another function. That’s because the
caller line is treated like any normal statement (it’s actually a statement).

For example:

We will use the collect function described above inside another new function which its
job is printing the result of the collection:

void print_collection (int first number, int second _number)

{

int sum = collect(first_ number, second number);
Print(sum);,

Here we called the collect function inside the print_collection function body and printed
the result. void means there’s no return vale (do you still remember?).

MQL4 Special functions init(), deinit() and start():

In MQLA4, every program begins with the function “init()” (initialize) and it occurs
when you attach your program(Expert advisor or Custom indicator) to the MetaTrader
charts or in the case you change the financial symbol or the chart periodicity. And its
job is initializing the main variables of your program (you will know about the variables
initialization in the next lesson).

When your program finishes its job or you close the chart window or change the
financial symbol or the chart periodicity or shutdown MetaTrader terminal, the function
"deinit()" (de-initialize) will occur.

The third function (which is the most important one) “start()” will occur every time
new quotations are received , you spend 90 of your programming life inside this
function.

We will know a lot about these functions in our real world lessons when we write our
own Expert advisor and Custom Indictor.

I hope you enjoyed the lesson.
I welcome very much the questions and the suggestions.

See you
Coders’ Guru
25-10-2005

MQL4 COURSE

By Coders’ guru
www.forex-tsd.com

-8-
Variables

Welcome to my MQL4 variables.

I hope you enjoyed the previous lessons and I hope you are ready for the variables
challenge:

I recommend you to read the “DATA TYPES” lesson before reading this lesson.
You can download it here:

http://forex-tsd.com/attachment.php?attachmentid=469

Now, let’s enjoy the Variables.
What are the variables mean?

As I told you the secret before, the variables are the names that refer to sections of
memory into which data can be stored.

To help you think of this as a picture, imagine that memory is a series of different size
boxes. The box size is memory storage area required in bytes.

e In order to use a box to store data, the box must be given a name; this process is
known as declaration.

e In the declaration process you use a word tell the computer what’s the kind and
size of the box you want to use, this word known as keyword.

e Ithelps if you give a box a meaningful name that relates to the type of
information which make it easier to find the data, this name is the variable
constant.

e Data is placed into a box by assigning the data to the box.

e When we set the value of the box you have created in the same line you declared
the variable; this process is known as initialization.

When we create a variable we are telling the computer that we want him to assign a
specified memory length (in bytes) to our variable, since storing a simple number, a letter
or a large number is not going to occupy the same space in memory, so the computer will

ask us what’s the kind of data and how much the length of the data? That is the Data type
for.

For example if we said this line of code to the computer:
int MyVaraible=0;

That’s mean we are asking the computer to set a block of 4 bytes length to our variable
named “MyVaraiable”.

In the previous example we have used:
int < Keyword

int < Integer data type.

int < Declaration

MyVaraible €< Variable’s constant.
=0 < Initialization

We will know more about variables in a coming lesson.
In MQLA4, these are the kinds of Data types:

e Integer (int)

e Boolean (bool)

e Character (char)

e String (string)

e Floating-point number (double)
e Color (color)

e Datetime (datetime)

I’ve copied the previous few lines from the DATA TYPES lesson for you. To know
what’s the variable, now how do to declare the variables:

Declaration:
Declaring a variable means to introduce it to the world and specify its type. By using the
keywords you have learned in the DATA TYPES lesson (int, double, char, bool, string,

color and datetime) with the name you chose to the variable.

For example:

int MyVaraible;

Here you declared a variable named MyVaraible which is an integer type. And before
the declaration you can’t use the MyVariable in your code. If you used it without
declaration the MQL4 compiler will complain and will tell you something like
this:'MyVaraible' - variable not defined. 1 error(s), 0 warning(s).

Initialization:
Initializing the variable means to assign a value to it, for example MyVaraible=0;
You can initialize the variable at the same line of the declaration like the example:

int My Varaible=0;

And you can declare the variable in one place and initialize it in another place like this:

int MyVaraible;

MyVaraible=5;
But keep in your mind this fact: the declaration must be before the initialization.

Scopes of variables:
There are two scopes of the variables, Local and Global.
Scope means, which part of code will know about the variable and can use it.

Local variable means they are not seen to outside world where they had declared. For
example the variables declared inside function are local to the function block of code, and
the variables declared inside the loop or decisions block of code are local to those blocks
and can be seen or used outside them.

For example:

double my_func (double a, double b, double c)
{
intd;
return (a*b + ¢);

}

In the above example the variables a,b,c and d are local variables, which can be used
only inside the function block of code (any thing beside the braces) and can’t be used by
outside code. So we can’t write a line after the function above saying for example: d=10;
because d is not seen to the next line of the function because it’s outside it.

The second kind of the scopes is the Global variables, and they are the variables which
had declared outside any block of code and can be seen from any part of your code.

For example:

int Global Variable;
double my_func (double a, double b, double c)

{

return (a*b + ¢ + Global Variable);

}

Here the variable Global Variable declared outside the function (function level
declaration) so, it can be seen by all the functions in you program.
The Global variables will automatically set to zero if you didn’t initialize them.

Extern variables:

The keyword “extern” used to declare a special kind of variables; those kinds of
variables are used to define input date of the program, which you can set them form the
property of your Expert advisor or Custom indicator.

For example:
extern color Indicator color = C'0x00,0x00,0xFF'; // blue
int init()

{

Here the variable Indicator_color had defined as an extern variable which you will see
it the first time you attach your indicator (or EA) to the MetaTrader chart and which you
can change it from the properties sheet windows. Look at Figure 1.

Moving Average

Parameters | Levels | Visualization|
Peiod B | shie [0 |
& methiod; IE:-:pDnential vi
Appl to; IE|DSE VI
Style: ||| lvary vi —_ [—
[DK J [Cancel] [Reset]

Figure 1: Property sheet of MA indicator

Here the variables Period, Shift, MA method, Apply to and Style are variables
defined using the “extern” keyword so they appear in the property sheet.

Any variable you want the user of your program be able to change and set, make it
extern variable.

I hope you enjoyed the lesson.

I welcome very much the questions and the suggestions.

See you
Coders’ Guru
29-10-2005

MQL4 COURSE

By Coders’ guru

-9-
Preprocessors

Welcome to my last theoretical lesson in this series.

In the next series of lessons we will start to build our first Customer Indicator,
So I recommend you to read all the nine lessons carefully before the real work starts.

Now, let’s enjoy the Preprocessors:

What are the Preprocessors mean?

Preprocessors are the instructions you give to the compiler to carry them out before
starting (processing) your code.

For example if you used the preprocessor directive #include <win32.h> that’s mean you
telling the compiler to include the content of the file “win32.h” in the place you wrote
the include keyword before processing your code.

In MQLA4 there are four of preprocessors directives:

1- define directive:

define directive used to generate a constant.

The constant is very like the variable with only one different, you set its value only once
and you can not change its value in your code like the variable.

For example:

#define my constant 100

As you can notice in the above example there’s no assignment symbol (=) but only space
between the constant name (my_constant) and its value (100).

And you can notice too that the line didn’t end with semi-colon but it ended with a
carriage-return character (new line).

The name of constant obeys the same rules you had learnt about choosing the identifier
names (lesson 2 SYNTAX), for example you can’t start the constant name with a
number or exceeds 31 characters.

The value of the content can be any type you want.

The compiler will replace each occurrence of constant name in your source code with
the corresponding value.

So you can use the above constant in your code like that:

sum = constantl * 10;

2- property directive:

There are predefined constants called “Controlling Compilation” included in the
MQL4 language, which you can set them in your program.

They are the properties of your program which you can set them using the compiler
directive “property” and the compiler will write them in the settings of your executable
program (ex4 file).

For example:

#property link "http://www.forex-tsd.com"
#property copyright "Anyone wants to use"

This is the list of the MQL4 predefined constants:

Constant Type Description
link string | a link to the company website

copyright string | the company name

stacksize int stack size

indicator_chart window |void show the indicator in the chart window
indicator_separate_window | void show the indicator in a separate window
indicator_buffers int the number of buffers for calculation, up to 8
indicator minimum int the bottom border for the chart
indicator maximum int the top border for the chart
L the color for displaying line N, where N lies between
indicator_colorN color playing o\

- 1 and 8
. fined level N fi i t
indicator levelN double prede ined level N or separate window custom

- indicator, where N lies between 1 and 8

. before script run message box with confirmation
show_confirm void
- appears
. . before script run its property sheet appears; disables

show_inputs void © P property bpears,

show_confirm property

3- include directive:

When you asking the compiler to include a file name with the “include” directive, it’s
very like when you copy the entire file content and paste it in the place of the line you
write include.

For example:

#include <win32.h>

In the above example you telling the compiler to open the file “win32.h” and reads all of
its content and copy them in the same place of the include statement.

Note: in the above example you enclosed the file name with Angle brackets (<>) and
that’s mean you telling the compiler to use the default directory (usually,

terminal directory\experts\include) to search for the file win32.h and don’t search the
current directory.

If the file you want to include located at the same path of your code, you have to use
quotes instead of angle brackets like this:

#include “mylib.h”
In the both cases if the file can’t be found you will get an error message.

You can use include at anywhere you want but it usually used at the beginning of the
source code.

Tip: It’s a good programming practice to write the frequently used code in a separate
file and use include directive to put it in your code when you need (just an advice).

4- import directive:

It’s like include directive in the aspect of using outside file in your program.
But there are differences between them.

You use import only with MQL4 executables files (.ex4) or library files (.dll) to import
their functions to your program.

For example:

#import "user32.dII"
int MessageBoxA(int hWnd,string IpText,string lpCaption,
int uType);
int MessageBoxExA(int hWnd,string IpText, string lpCaption,
int uType,int wLanguageld);
#import "melib.ex4"
#import "gdi32.d11"
int GetDC(int hWnd);
int ReleaseDC(int hWnd,int hDC);
#import

When you import functions from “ex4” file you haven’t to declare their functions to be
ready for use.

While importing the functions from a “.dIl” file requires you to declare the functions
you want to use like this:

int MessageBoxA(int hWnd, string IpText,string [pCaption,
int uType);

And only the functions you has declared you can use in your code.

You must end the import directives with a blank import line #import (without
parameters).

I hope you enjoyed the lesson. And I hope you are ready now for your first Custom
Indicator.

I welcome very much the questions and the suggestions.

See you
Coders’ Guru
30-10-2005

MQL4 COURSE

By Coders’ guru

-10-
Your First Indicator
Part 1

Welcome to the practical world of MQL4 courses; welcome to your first indicator in
MQL4.

I recommend you to read the previous nine lessons very carefully, before continuing with
these series of courses, that’s because we will use them so much in our explanations and
studies of the Expert Advisors and Custom Indicators which we will create in this series
of lessons.

Today we are going to create a simple indictor which will not mean too much for our
trade world but it means too much to our MQL4 programming understanding.

It simply will collect the subtraction of High [] of the price — Low [] of the price; don’t
be in a hurry, you will know everything very soon.

Let’s swim!

MetaEditor:

This is the program which has been shipped with MT4 (MetaTrader 4) enables you to
write your programs, read MQL4 help, compile your program and More.

I’ve made a shortcut for MetaEditor on my desktop for easily access to the program.
If you want to run MetaEditor you have three choices.

1- Run MT4, then click F4, choose MetaEditor from Tools menu or click its icon on
the Standard toolbar (Figure 1).

2- From Start menu—> Programs, find MetaTrader 4 group then click MetaEditor.

3- Find the MT4 installation path (usually C:\Program Files\MetaTrader 4), find the
MetaEditor.exe and click it (I recommend to make a shortcut on you desktop).

fh- B~ | & & G 7, L‘_Ei.New OrdeO?’ﬁ Enable Expert Advisors | (W7

Figure 1 — MetaTrader Standard Toolbar

Any method you have chosen leads you to MetaEditor as you can see in figure 2.
As you can see in figure 2, there are three windows in MetaEditor:

1- The Editor window which you can write your program in.
2- The Toolbox window which contains three tabs:
a. Errors tab, you see here the errors (if there any) in your code.
b. Find in files tab, you see here the files which contain the keyword you are
searching for using the toolbar command “Find in files” or by clicking
CTRL +SHIFT+ F hotkeys.
c. Help tab, you can highlight the keyword you want to know more about it
and click F1, and you will see the help topics in this tab.
3- The Navigator window which contains three tabs:
a. Files tab, for easy access to the files saved in the MT4 folder.
b. Dictionary tab enables you to access the MQL4 help system.
c. Search tab enables you to search the MQL4 dictionary.

O MetaEditor - [My_First_Indicator.mgd] E”E|®
i@ File Edit “iew Tools ‘window Help - R

@. =[5 ﬁ:| lﬁ] s by [y éa = | B comple B Terminal ﬁ?”

e A G - PP . A I x
£ My Firat Indici||§] Dictionary ~)
el olaTy 1,{23 MGL4 quick referer
;ﬁl http://waw, forex: W @.ﬁ.cmunt Ifﬁ:-rmatio
f#property copyright "Coderscgura” - .CYr!.g% '95:'5
#property link "hE:dltﬂtrwW:in.dﬂ-“éd.com" 2 Wandowtions

E.@ Conversion functiol
#iproperty indicator separate window {52 Custom Indicator i
fiproperty indicator:buffers I # @ Dake & Time Functic
fiproperty indicator colorl Red | File functions bl
| < . §| | Files | Dictionaty | ‘Search

| Descripkion File
Carmnpiling '™y _First_Indicator.mad...
0 error{s), 0 warning{s}

Toolbox window

=
(o
I%_ Errors | FirdinFiles | Help |

For Help, press <Flzx Lo 1, Cold

Figure 2 — MetaFEditor Windows

I recommend you to navigate around the MetaEditor Menus, Toolbar and windows to be
familiar with it.

Now let’s enjoy creating our first custom indicator.

Custom Indicator is a program which enables you to use the functions of the technical
indicators and it cannot automate your deals.

First three steps:

Now you have run your MetaEditor and navigated around its Menus, Toolbar and
windows, let’s USE it.

To create a custom indicator you have to start with three steps (you will learn later how to
skip these boring steps (my personal opinion).

Step 1: Click File menu - New (you use CTRL+N hotkey or click the New Icon in the
Standard toolbar).

You will get a wizard (Figure 3) guiding you to the next step.

Choose Custom Indicator Program option, and then click next.

| Expert Advisor Wizard rEJ@

Welcome to the Expert Advisor

Mal 4 Wizard

Thig wizard helpz vou create Metaluotes Language 4
pragram.

Flease select what pou would like to create.

(3 Expert &dvizor program

{%3iCustam |ndicator progran

{73 Script program

{73 Generate from template

To continue, click Mest.

¢ Back [Mewt =][Cancel] [Help

Figure 3 - New project wizard

Step 2: When you clicked Next, you will get the second step wizard (Figure 4) which
will enable you to edit the properties of your program. In this step you can enter these
properties:

1- Name of your program, this is the name which the world will call you program
with and it will be saved as the name_you have chosen.mq4

2- Author name, the creator of the program name.

3- Link to your web site.

4- External variables list: I want to pause here to remember you about external
variable.

External variables are the variables which will be available to the user of you
indicator to set from the properties tab of your indicator in MetaTrader. For
example: MA_Period in the very popular EMA indicator. And these variables
will be declared with the “extern” keyword in your code (Please review
Variables lesson).

So, this section of the wizard enables you to add these kinds of variables.

In our first indicator example we will not need any external variables just write
the values you see in figure 4 and let’s go to step 3 by clicking Next button.

Expert Advisor Wizard

General properties of the Custom indicator program
Please zpecify general properties of the Cugtom indicatar prograr.

Mame: | ky_First_Indicatar [

Author: | Codersgury I

Link: hittp: & A Fores-tad. com |

Farameters: | Hame Type Imitial salue | Add
Belete
< Back ” Mewt = l [Cancel] [Help

Figure 4 — Program properties wizard.

Step 3: The third wizard you will get when you clicked Next button is the Drawing
properties wizard (Figure 5).

Its job is enabling you to set the dawning properties of the lines of your indicator, for
example: how many lines, colors and where to draw your indicator (in the main chart or
in separate windows).

This wizard contains the following options:

1- Indicator in separate window option: by clicking this option, your indicator will
be drawn in separate windows and not on the main chart window. If you didn’t
check the option, your indicator will be drawn in the main chart window.

2- Minimum option: it will be available (enabled) only if you have checked the
Indicator in separate window option, and its job is setting the bottom border for
the chart.

3- Maximum option: it will be available (enabled) only if you have checked the
Indicator in separate window option, and its job is setting the top border for the
chart

4- Indexes List: here you add your indicator line and set its default colors.

I want you to wait to the next lesson(s) to know more about these options and don’t be in
a hurry.

For our first indicator example, choose Indicator in separate window option and click
Add button, when you click add button the wizard will add a line to the indexes list like
you see in figure 5.

Expert Advisor Wizard

Drawing properties of the Custom indicator program
Please zpecify drawing properties of the Custam indicator program.

|ndizator i zeparate window

[Mimirmr ' | |

[] M aimum i_"]

Indeses: | # | Tupe Colar Symbol dd

I

Delete

< Back ” Finizh][Cancel] [Help

Figure 5 - Drawing properties wizard.

When you click Finish button the Magic will start. You will see the wizard disappeared
and the focus returned to the MetaEditor environment and... guess what?

You have ready to use first indicator draft code.

This is the code you will get:

11| M/_First_Indicator.m4 |
11| Coder sguru
11| http://ww. forex-tsd. com |

#property copyright "Codersguru”
#property |ink "http://ww.forex-tsd. cont

#property indi cator_separate_w ndow
#property indicator_buffers 1
#property indicator_colorl Red
/l---- buffers

doubl e Ext MapBufferl[];

I I R i i T +
/1] Customindicator initialization function

I I R i I +
int init()

//---- indicators

Set | ndexSt yl e(0, DRAW LI NE)

Set | ndexBuf f er (0, Ext MapBuffer1);
Il----

return(0);

/1] Custor indicator deinitialization function

Il----
return(0);

/1] CQustomindicator iteration function

int start()
{

i nt count ed_bar s=I ndi cat or Count ed() ;
Il----

Il----
return(0);

}

As you see in the above code, the wizard has written a lot of code for you, now I have to
thank the wizard and to thank you too.

In the next lesson we will discover every line of code you have seen above and add our
code to make our first indicator. To this lesson I hope you be ready!

Please don’t forget to download the source code of the first indicator and warm yourself

for the next lesson.

I welcome very much the questions and the suggestions.

See you
Coders’ Guru
01-11-2005

MQL 4 COURSE

By Coders guru
www.forex-tsd.com

11
Your First I ndicator
Part 2

Welcome to the second part of “Your First Indicator” lesson.
In the previous lesson we didn’t write any line of code, that’ s because the New Project
Wizard wrote all the code for us. Thanks!

Today we are going to add few lines to the code the wizard had generated to make our
program more useful.
Afterwards, we are going to explain the whole of the code line by line.

Let’s coding
Code we have added:

We have added the code which in abold dark blue to our previous code:

/1] My_First I ndicator.ng4 |
/1] Coder sguru |
/1] http://ww. forex-tsd. com |

#property copyright "Codersguru"”
#property |ink "http://ww.forex-tsd. cont

#property indicator_separate_w ndow
#property indicator_buffers 1
#property indicator_colorl Red

[l---- buffers
doubl e Ext MapBufferl[];
B +
/1] Customindicator initialization function
B +
int init()
{
/[l---- indicators

Set | ndexSt yl e(0, DRAW LI NE)

Set | ndexBuf f er (0, Ext MapBuffer1);

string short_name = "Your first indicator is running!"
I ndi cat or Short Nane(short _nane) ;

http://www.forex-tsd.com
http://www.forex-tsd.com\

If----
return(l);

}
B +
/1] Custor indicator deinitialization function
B +
int deinit()
[]----
[]----
return(0);
}
B +
/1] Customindicator iteration function
B +
int start()
{
i nt count ed_bar s=I ndi cat or Count ed() ;
/l---- check for possible errors
if (counted bars<Q) return(-1);
//---- last counted bar will be recounted
i f (counted bars>0) counted bars--;
i nt pos=Bar s- count ed_bar s;
doubl e dHi gh , dLow , dResult;
Comrent ("Hi ! I'mhere on the main chart w ndows!");
[l---- main calculation |oop
whi | e(pos>=0)
{
dH gh = Hi gh[pos];
dLow = Low pos];
dResult = dHi gh - dLow,
Ext MapBuf f er 1[pos] = dResul t ;
pos- -
}
[]----
return(0);
}
B +

How will we work?

We will write the ling(s) of the code we are going to explain then we will explain them
afterwards, if there are no topics, we will explain the line(s) of code directly. But at the
most of the time we will pause to discuss some general topics.

| want to here your suggestion about this method please!

Now let’s crack this code line by line.

/1] My_First I ndicator.ng4 |
/1] Coder sgur u
/1] http://ww. forex-tsd. com |
A e i +
Comments:

Thefirst five lines of code (which are in gray color) are comments.
Y ou use Comments to write lines in your code which the compiler will ignore them.
Y ou are commenting your code for alot of reasons:
e Tomakeit clearer
To document some parts like the copyright and creation date etc.
To make it understandable.
To tell us how the code you have written is work.

Y ou can write comments in two ways:

Single line comments: The Single line comment starts with “//” and ends with the new
line.

Multi-line comments; The multi-line comment start with “/*” and ends with “*/” and
you can comment more than one line.

In our program the MQL4 wizard gathered from the data we entered the name of the
program, author and the link and wrote them as comments at the top of our program.

#property copyright "Codersguru"”
#property |ink "http://ww.forex-tsd. cont

#property indicator_separate_w ndow

#property indicator_buffers 1
#property indicator_colorl Red

Property directive:

Asyou notice all of these lines start with the word (#property). That’s because they are
kind of the Preprocessor s directives called property directives.

The Preprocessor s are the instructions you give to the compiler to carry them out before
starting (processing) your code.

http://www.forex-tsd.com\

The property directives are predefined constants called “Controlling Compilation”
built in the MQL4 language; their job is setting the properties of your program.

For example: is your Indicator will appear in the main chart window or in a separate
window? Who is the writer of the program?

Note: The preprocessors lines end with a carriage-return character (new line) not a
semi-colon symbol.

We will try to discuss here the property directives available in MQLA4.

link:
This property setting the web link to your web site which you asked to enter it in step 2
in the Expert Advisor Wizard (review the previous lesson).

The datatype of this property is string.

copyright:
It’s the name of the author of the program, same as the link property you asked to enter
it in step 2 in the Expert Advisor Wizard.

The datatype of this property is string.

stacksize:
It's an integer value setsthe memory size for every thread, the default value is 16384.
The datatype of this property is integer.

indicator_chart_window:

When you set this property, your indicator will be drawn in the main chart window
(Figure 1). You have to choose one of two options for your Indicators, drawing themin
the main chart windows by using this property, or drawing them in separate windows by
choosing the indicator_separate window. Y ou can’t use the both of them at the same
time.

The datatype of this property is void, which means it takes no value.

indicator_separate_window:

When you set this property, your indicator will be drawn in a separate window (Figure
1). You can set the scale of the separate indicator window using two properties
indicator_minimum for the minimum value and indicator_maximum for the
maximum value of the scale.

And you can set the level of your indicators on these scales using the property
indicator_levelN where’sthe N isthe indicator number.

Both of the propertiesindicator_chart_window and indicator_separate window are
void data type, which mean they don’t take value and you just write them.

In our program we will draw our indicator in a separate window:
#property indicator_separate_w ndow

_ :llllm |"II'"I|.|.||.

: -} 11300

|10z

Separ ate window

0,007

B Mow 2000 17 Jun 2001 27 Jan 2002 8 Sep 2002 20 Apr2003 30 Mow 2003 11 Jul 2004 14 Feb 2005 26 Sep 2005

Figure 1

indicator_minimum:

With the aid of this property we are setting the minimum value of the separate windows
scale, which is the bottom border of the windows. For example:

#propery indicator_minimum 0
#propery indicator_ maximum 100

Here we have set the bottom border of the window to 0 and the top border to 100 (see
indicator_ maximum), hence we have a scale ranged from 0 to 100 in our separate
window which we are drawing our indicator.

The datatype of this property is integer.

indicator_maximum:

With the aid of this property we are setting the maximum value of the separate windows
scale, which is the top border of the windows.

This value must be greater than the indicator_minimum value.
The datatype of this property is integer.

indicator_levelN:

With the aid of this property we are setting the level of the indicator in the scale we have
created with the propertiesindicator_minimum and indicator_maximum, this value
must be greater than the indicator_minimum value and smaller than the
indicator_maximum value.

N isthe indicator number which we are setting its level, it must range from 1 to 8
(because we are allowed only to use up to 8 indicator buffersin our program, so we can
set theindicator_level for each of them using its number). For example:

#propery indicator_minimum 0

#propery indicator_minimum 100

#propery indicator_level1 10 //set thefirst indicator buffer level
#propery indicator_level2 65.5 //set the second indicator buffer level

The datatype of this property is double.

indicator_buffers:

With the aid of this property we are setting the number of memories spaces (Arrays)
allocated to draw our line(s). When we set the number (ranged from 1 up to 8) we are
telling MQL4: “Please allocate a memory space for me to draw my indicator line”.

In our program we used only one buffer.
#property indicator_buffers 1

That’s because we will draw only one line.

indicator_colorN:

We can use up to 8 lines in our indicator, you can set the color of each of them using this
property indicator_colorN , where the N is the line number which defined by
indicator_buffers.

The user of your Indicator can change this color from the properties dialog of your
Indicator (Figure 2).

In our program the indicator line color will be red.

#property indicator_colorl Red

The datatype of this property is color.

Custom Indicator - Moving Averages

Common | Inputs | Colars |‘»-"isualizati|:|ng

Color "width Style

o
I e E—

[Q. H Caticel H Reseat

Figure 2

doubl e Ext MapBufferl1[];
Arrays:

In our life we usually group similar objects into units, in the programming we also need
to group together the data items of the same type. We use Arrays to do this task.

Arrays are very like the list tables, you group the items in the table and access them the
number of the row. Rowsin the Arrays called Indexes.

To declare an array you use a code like that:
int my_array[50];
Here, you have declared an array of integer type, which can hold up to 50 items.

Y ou can access each item in the array using the index of the item, like that:
My_array[10] = 500;
Here, you have set the item number 10 in the array to 500.

You caninitialize the array at the same line of the declaration like that:
int my_array[5] = {1,24,15,66,500};

In our program we used this line of code:
doubl e Ext MapBufferl1[];

Here we have declared and array of double type. We will use array to calculate our
values which we will draw them on the chart.

int init()
{
}

Special functions:

Functions are blocks of code which like a machine takes inputs and returns outputs
(Please review lesson 7 — Functions).

In MQLA4 there are three special functions

init():

Every program will run this function before any of the other functions, you have to put
here you initialization values of you variables.

start():

Here' s the most of the work, every time a new quotation have received your program
will call this function.

deinit():
Thisisthe last function the program will call before it shutdown, you can put here any
removals you want.

Set | ndexSt yl e(0, DRAW LI NE) ;

Set | ndexBuf f er (0, Ext MapBuffer1);

string short_name = "Your first indicator is running!";
I ndi cat or Short Nane(short _nane) ;

Custom indicator functions:

| can't give you a description for all of the indicators functions in this lesson. But we
will use them all in our next lessons with more details. So, we will study here the
functions used in our program.

SetlndexStyle:

void SetlndexStyle(int index, int type, int style=sEMPTY,, int width=EMPTY/, color
clr=CLR_NONE)

This function will set the style of the drawn line.

The index parameter of this function ranges from 1 to 7 (that’s because the array
indexing start with O and we have limited 8 line). And it indicte which line we want to
st its style.

Thetype parameter is the shape type of the line and can be one of the following shape
type's constants:

DRAW_LINE (draw aline)
DRAW_SECTION (draw section)
DRAW_HISTOGRAM (draw histogram)
DRAW_ARROW (draw arrow)
DRAW_NONE (no draw)

The style parameter is the pen style of drawing the line and can be one of the following
styles' constants:

STYLE_SOLID (use solid pen)

STYLE_DASH (use dash pen)

STYLE_DOT (use dot pen)

STYLE_DASHDOT (use dash and dot pen)

STYLE_DASHDOTDOT (use dash and double dots)

Or it canbe EMPTY (default) which means it will be no changes in the line style.

The width parameter is the width of line and ranges from 1 to 5. Or it can be EMPTY
(default) which means the width will not change.

The clr parameter is the color of the line. It can be any valid color type variable. The
default value is CLR_NONE which means empty state of colors.

In our line of code:
Set | ndexStyl e(0, DRAW LI NE) ;

We have set the index to O which means we will work with the first (and the only) line.

And we have set the shape type of our lineto DRAW_LINE because we want to draw a
line in the chart.

And we have left the other parameters to their default values.

Setl ndexBuffer:

bool SetlndexBuffer(int index, double array[])

This function will set the array which we will assign to it our indicator value to the
indicator buffer which will be drawn.

The function takes the index of the buffer where's 0 isthe first buffer and 2 is the second,
etc. Then it takes the name of the array.

It returns true if the function succeeds and false otherwise.

In our program the array which will hold our calculated valuesis Ext MapBuf f er 1.

And we have only one indicator buffer (#property indicator_buffers 1). Soit
will be the buffer assigned.

I ndicator ShortName;

void I ndicator ShortName(string name)

This function will set the text which will be showed on the upper left corner of the chart
window (Figure 3) to the text we have inputted.

In our program we declared a string variable and assigned the value “Y ou first indicator
Isrunning” to it, then we passed it to the I ndicator ShortName function.

string short_name = "Your first indicator is running!";
I ndi cat or Short Nane(short _nane) ;

e - : ! ; 2 ~-b1.3710
|| | | : ||I||.|| | ||| |"Ill|||| ; . il
] "" NI WHJWHWWW” hL" b
! §||"!"||Ii|||l!l 'lll . : : : : : :
' Il I|||| |||"|. L ! !

I
dlh 1.1822

: -L1.4300

e . : : ; : : ; : : T
= Ill.l.'ll : -:--:-. -:--:-. -:--:-. .: 092490

B Mow 2000 17 Jun 2001 27 Jan 2002 8 Sep 2002 20 Apr2003 30 Mow 2003 11 Jul 2004 14 Feb 2005 26 Sep 2005

Figure 3

return(0);

Thisisthe return value of the init() function which terminate the function and pass the
program to the execution of the next function start().

int deinit()

{
[]----

I]----
return(0);

}
Nothing new to say about deinit() function.

We will continue with remaining of the code in the next lesson.
| hope you enjoyed the lesson and | welcome your questions.

See you
Coders Guru
06-11-2005

MQL 4 COURSE

By Coders guru
www.forex-tsd.com

12
Your First I ndicator
Part 3

Welcome to the third part of “Your First Indicator” lesson.

In the previous lesson we studied the code of our first indicator line by line and we
reached the function dinit().

| hope you’ ve came from the previous lessons with a clear idea about what we have done.

Today we are going to study start() function and its content. And —finally- we will
compile and run our first Indicator.

Areyou ready? Let’s hack the code line by line:

Our Code:

/1] My_First I ndicator.ng4 |
/1] Coder sguru |
/1] http://ww. forex-tsd. com |

#property copyright "Codersguru”
#property link "http://ww.forex-tsd. cont

#property indi cator_separate_w ndow
#property indicator_buffers 1
#property indicator_colorl Red

[l---- buffers
doubl e Ext MapBufferl[];
B +
/1] Customindicator initialization function
B +
int init()
{
/[l---- indicators

Set | ndexSt yl e(0, DRAW LI NE)
Set | ndexBuf f er (0, Ext MapBuffer1);
string short_name = "Your first indicator is running!"
I ndi cat or Short Nane(short _nane) ;
I]----

http://www.forex-tsd.com
http://www.forex-tsd.com\

return(l);

}
B +
/1] Custor indicator deinitialization function
B +
int deinit()
{
[]----
[]----
return(0);
}
B +
/1] Customindicator iteration function
B +
int start()
{
i nt count ed_bar s=I ndi cat or Count ed() ;
/l---- check for possible errors
if (counted bars<0Q) return(-1);
/[l---- last counted bar will be recounted

i f (counted bars>0) counted bars--;
i nt pos=Bar s- count ed_bar s;

doubl e dHi gh , dLow , dResult;
Comment ("H! 1'mhere on the main chart wi ndows!");

[l---- main calculation |oop
whi | e(pos>=0)

dH gh = H gh[pos];
dLow = Low[pos];
dResult = dHi gh - dLow,
Ext MapBuf f er 1[pos] = dResul t ;
pos- -,
}

I]----
return(0);

}

int start()

}éiurn(O);

}

As| told you before, we will spend 90% of programming life inside the braces of start()
function. That’s because it’s the most important MQL4 Special functions.

On the contrary of the init() and deinit function, start() will not be called (by the
terminal client) only one time, But every time a new quotation arrives to MetaT rader
terminal client, every time the start() function has been called.

start() function returns an integer value like all of the MQL4 special function, where O
means no error and any number else means an error has been occurred.

i nt count ed_bar s=I ndi cat or Count ed() ;

Here, we have defined the variable counted_bars as an integer type, and we have
assigned to it the returned value of the function Indicator Counted().

int I ndicator Counted()

This function will return an integer type value holds the count of the barswhich our
indicator has been calculated them.

In the first launch of your indicator this count will be O because the indicator didn't
calculate any bars yet. And after that it will be the count of total bars on the chart -1.
(Please see the function Bar s below).

if (counted bars<0Q) return(-1);

We have got the number of counted_bars in the previous line of code by using
Indicator Counted() function.

This number must be O or greater if there’ s no errors have been occurred. If it’s less than
0 that’s means we have an error and we have to terminate the start() function using the
return statement.

i f (counted bars>0) counted bars--;

We are checking here if the counted_bars are greater than O.
If that’ s true we decrease this number by subtracting 1 from it.
That’ s because we want to recount the last bar again.

We use the decrement operator (please review Lesson 4 - Operations & Expressions) for
decreasing the value of counted_barsby 1.

Note: We can write the expression counted_bars-- like this:

counted_bars = counted_bars-1;

i nt pos=Bar s- count ed_bar s;

Here, we are declaring the variable pos to hold the number of times our calculation loop

will work (see while loop later in this lesson). That’s by subtracting the counted_bars
from the count of total bars on the chart, we get the total bars count using Bar s()
function.

It's agood time to discuss Barg() function and its brother.

Pre-defined MQL 4 variables:

AsK, Bid, Bars, Close, Open, High, Low, Time and Volume are functions although
MQL4 called them Pre-defined variables. And I’ ll proof to you why they are functions.

Variable means a space in memory and data type you specify.
Function means do something and return some value, For example Bar s collects and
returns the number of the barsin chart. So, isit avariable?

Another example will proof for you that they are not variables:
If you type and compile this line of code:

Bars=1;

You will get thiserror: 'Bars - unexpected token
That’s because they are not variables hence you can’t assign a value to them.

Another proof, the next line of code isavalid line and will not generate and error in
compiling:

Alert(Bars(1));

You can't pass parameter to avariable, parameters passed only to the functions.
I’m so sorry for the lengthiness, let’s discuss every function.
int Bars

This function returns an integer type value holds count of the total bars on the current
chart.

double Ask

This function (used in your Expert Advisors) returns a double type value holds the
buyer’s price of the currency pair.

double Bid

This function (used in your Expert Advisor) returns a double type value holds the seller’s
price of the currency pair.

Note: For example, USD/JPY = 133.27/133.32 the | eft part is called the bid price (that is
a price at which the trader sells), the second (the right part) is called the ask price (the
price at which the trader buys the currency).

double Open(]

This function returns a double type value holds the opening price of the referenced bar.
Where opening price is the price at the beginning of atrade period (year, month, day,
week, hour etc)

For example: Open[0] will return the opening price of the current bar.

double Closg]]

This function returns a double type value holds the closing price of the referenced bar.
Where closing price is the price at the end of atrade period

For example: Close[0] will return the closing price of the current bar.

double Highl[]

This function returns a double type value holds the highest price of the referenced bar.
Where it’ s the highest price from prices observed during a trade period.

For example: High [0] will return the highest price of the current bar.

double L ow[]

This function returns a double type value holds the lowest price of the referenced bar.
Where it’ sthe lowest price from prices observed during atrade period.

For example: Low [0] will return the lowest price of the current bar.

double Volume(]

This function returns a double type value holds the average of the total amount of
currency traded within a period of time, usually one day.

For example: Volume [0] will return this average for the current bar.

int Digits

This function returns an integer value holds number of digits after the decimal point
(usually 4).

double Point

This function returns a double value holds point value of the current bar (usually 0.0001.

datetime Time[]

This function returns a datetime type value holds the open time of the referenced bar.
For example: Time [Q] will return the open time of the current bar.

doubl e dHi gh , dLow , dResult;

We declared three double type variables which we will use them later. Notice the way we
used to declare the three of them at the same line by separating them by coma.

Conment ("Hi'! 1'"mhere on the main chart w ndows!");

This line of code uses the Comment function to print the text “Hi! I'm here on the main
chart windows!” on the left top corner of the main chart (figurel).

There are two similar functions:

void Comment(...)

This function takes the values passed to it (they can be any type) and print them on the
left top corner of the chart (figure 1).

void Print (...)

This function takes the values passed to it (they can be any type) and print them to the
expert log (figure 2).

void Alert(...)

This function takes the values passed to it (they can be any type) and display them in a
dialog box (figure 3)

+ 11788

-1+ 1.1745

2 Mow 2005 9 Mow 05:30 9 Mow 21:30 10 Mow 13:30 11 Mow 05:30

ELRLISD,M30 | ELRUSD,M30 {offline) |

Figure 1 — Comment

* | Time Message

& 2005.11.13 1., My_First_Indicator EURLSD,M30: initialized

i I M2 lnads oy
oill Trade | &ccount History | &lerts | Maibox | Experts | Jourmal |
L=

Figure 2- Expert log

& plert
Q 0,002

| 1zism:za 0.0024 A :
L4 12:50:29 | 0.0005 '
| 0 1z:50:29 0.0004

| 12:50:29 0.0024 v

Figure 3 - Alerts

whi | e(pos>=0)

{
dH gh = H gh[pos];
dLow = Low[pos];
dResult = dHi gh - dLow,
Ext MapBuf f er 1[pos] = dResul t ;
pos- -,
}

Now, it’sthe time to enter the loop for calculating our indicator points to draw them.
Any value we assign to the array ExtMapBuffer1[] will be drawn on the chart (because
we have assign this array to the drawn buffer using SetlndexBuffer function).

Before we enter the loop we have got the number of times the loop will work by
subtracting the counted_bars from the total count of the bars on chart.

The number of times the loop will work called Loop variable which it’s pos variable in
our example.

We use the loop variable as a current bar of the calculation for example High[pos] will
return the highest price of the pos bar.

In the loop body we assign to the variable dHigh the value of the highest price of the
current loop variable.

And assign to the variable dL ow the value of the lowest price of the current loop
variable.
The result of subtracting dL ow from dHigh will be assigned to the variable dResult.

Then we using the dResult to draw or indicator line, by assigning it to the drawn buffer
array ExtM apBuffer 1[].

The last line of the loop is a decrement expression which will decrease the loop variable
pos by 1 every time the loop runs. And when this variable reaches -1 the loop will be
terminated.

Finally, we can compile our indicator. Press F5 or choose Compile from file menu.
That will generate the executable file “My_First_indicator.ex4” which you can load in
your terminal client.

To load your indicator click F4 to bring the terminal client. Then From the Navigator
window find the My_First_indicator and attach it to the chart (figured).

Note: Theindicator will not do much, but it believed that the subtraction of the highest
and lowest of the price gives us the market's volatility.

Mavigatar] 0

._-“'o P TEE—— e - LR et O

| £2 Moving Averages [

&2 41, First Indicator s
o Os1A i S LA TR LR R LT | ARLER 1.1705
..1"? Parabolic i Lo e _ 3 _,: e e _ . ||1'E"!’|]I"""" _____ HELL
":'i“- PriceChanneI_Stu:up_vl hn ! __ ! ___ ' R SRR
£ RII i ' ' ' 0,006
7l RaTL : - - - - .

£ SDE-ZoneBreakout

[¥] stochastic

£ Shinarkrand

Commaon | Favorites | EURLISD,M30 | EURLSD,M30 (offline) |

Figure 4 — My_First_Indicator

| hope you enjoyed your first indicator. And be prepared to your first Expert Advisor in
the next lesson(s).

| welcome very much your questions and suggestions.

Coders Guru
13-11-2005

MQL 4 COURSE

By Coders' guru
www.forex-tsd.com

-13-
Your First Expert Advisor
Part 1

I nthe previous lesson we created our first indicator. Although this indicator wasn’t
useful for us as trader, but it was very useful for us as programmers.

The indicators —in general- are very important for the technical analysis of the market in
trying to predict the future prices.

But with the indicators we observe the chart then use our hands to sell, buy and modify
our orders manually. Y ou have to set in front of your terminal, and keep your eyes widely
open.

If you get tired, want to drink a cup of tea or even take a short vacation. Y ou have to
consider one of these solutions:

Y ou may rent someone to observe the termina for you and calling your mobile phone
every five minutesto tell you what’s going on. If this employee is an expert, he will cost
you the pips you earn. And if he is novice one, he will cost you your capital.

The second solution is using a program to automate your trades.
That’s what the Expert Advisor isfor.

The Expert advisor is aprogram wrote in MQL4 (we are studying MQL4 huh?) uses your
favorite indicators and trade methods to automate your orders.

It can buy, sell and modify the orders for you. It enables you to drink a cup of teaand
save the salary you gave out to your employee or the bunch of flowers you bring to your
assistant wife.

Today we are going to create our first expert advisor so let’s go.
First two steps.
Stepl:

If you didn’t open your MetaEditor yet, | think it’s the time to run it.

http://www.forex-tsd.com

From the MetaEditor File menu click New (you can use CTRL+N hotkey or click the
New icon in the standard toolbar). That will pop up the new program wizard which you
have seen when you created your first indicator (Figure 1).

Thistime we will choose the first option “ Expert Advisor program” then click Next
button.

Expert Advisor Wizard FEJ@

Welcome to the Expert Advisor

Mal 4 Wizard

Thiz wizard hielps you create Metaluotes Language 4
progran.

Fleaze zelect what you would like to create.

(%)iE pert Advizor program

(7 Custom Indicatar program

{3 Script program

{3 Generate fram template

To continue, click Mest.

<Hack [Mest = l[Cancel

Figure 1 —thefirst step wizard
Step2:
When you clicked Next, you have got the general properties wizard (Figure 2).
Thiswizard enables you to set the properties of your expert advisor and to set the external

variables you will usein your expert advisor.

In this step you can set these properties:

1- Name of your expert advisor, in our sample we will use My _First_EA.

2- Author name of the program, type your name (I typed mine in the sample).
3- Link to your web site.

4- External variableslist:

Thisisthelist of the external variables you allow the user of your expert advisor to
change them from the Expert properties window.

To add anew variable you click the Add button, clicking it will add a new record to
the external variableslist. Every record has three fields:

Name: double click thisfield to set the name (identifier) of the variable.
Type: double click thisfield to set the data type of the variable.

Initial value: double click thisfield to give your variable initiaization val ue.
Thisfield isoptional which means you can leave it without setting

In our sample we have added three variables:

Varaible = Type =2 initial value
TakeProfit - double - 350
Lots > double > 0.1
TrailingStop - double > 35

Expert Advisor Wizard

General properties of the Expert Advizor
Please zpecify general properties of the Expert Advisar,

M ame; %-H_I,I_First_E.-’-'-. [

Author: | Coders Guru i

Link: | wene fores-tsd. com |

| e

Faramieters: | b ame Type Initial walue | Add

(B TakeProfit double 250.0
| Delete
. [Lots double 0.1

i TralingStop double

[< Back H Firizh l [Cancel]

Figure 2 —the second step wizard

Now click the Finish button to close the wizard, and MetaEditor will bring to you the
code created by the wizard and savesthe file My _First EA.mqg4 inthe MetaTrader 4
\experts path.

Note: you have to put the expert advisorsin MetaTrader 4\experts path and the
indicatorsin MetaTrader 4\experts\indicators path, otherwise they will not work.

Thisisthe code we have got from the wizard:

11| My_First_EA mg4 |
11| Coders Quru
11| http://ww. forex-tsd.com

#property copyright "Coders Quru”
#property link "http://ww.forex-tsd. cont

[l---- input paraneters

ext ern doubl e TakePr of i t =250. 0;
ext ern doubl e Lot s=0. 1;

ext ern doubl e Trail i ngSt op=35. 0;

/1] expert initialization function

int deinit()
{
Il----

Il----
return(0);

int start()

{
[]----

Il----
return(0);

}

As you see above, the code generated by the wizard is atemplate for you to add your code without
bothering you by typing the main functions from scratch.

Now let’sadd our own code;

11| My_First_EA mg4 |

http://www.forex-tsd.com\

11| Coders Quru
11| http://ww. forex-tsd. com |
I I R i I
#property copyright "Coders CGuru"
#property link "http://ww.forex-tsd. cont
[l---- input paraneters
extern doubl e TakePr of i t =250. O;
extern doubl e Lot s=0. 1;
ext ern doubl e Trail i ngSt op=35. 0;
I I R i i T
/1] expert initialization function
I I R i I
int init()
{
If----
If----
return(0);
}
I I R i i T
/1] expert deinitialization function
I I R i I
int deinit()
{
If----
If----
return(0);
int Crossed (double linel , double Iine2)
{
static int last_direction = 0;
static int current_dirction = O;
if(linel>line2)current_dirction = 1; //up
if(linel<line2)current_dirction = 2; //down
if(current_dirction !=last_direction) //changed
{
last_direction = current_dirction
return (last_direction);
}
el se
{
return (0);
}
I R i
/1] expert start function
I I R i T i
int start()

[]----

http://www.forex-tsd.com\

int cnt, ticket, total;
doubl e short Ena, | ongEns;

i f (Bar s<100)

{
Print("bars |less than 100");

return(0);
}
i f(TakeProfit<10)

Print("TakeProfit |ess than 10");
return(0); // check TakeProfit

}

short Ema = i MA(NULL, 0, 8, 0, MODE_EMA, PRI CE_CLCSE, 0) ;
| ongEma = i MA(NULL, 0, 13, 0, MODE_EMA, PRI CE_CLCSE, 0) ;

int isCossed = Crossed (shortEmg, | ongEma);
total = OdersTotal ();
if(total < 1)

if(isCrossed == 1)
{
ticket =Or der Send(Synbol (), OP_BUY, Lot s, Ask, 3, 0, Ask+TakeProfit*Poi nt,
"My EA", 12345, 0, G een);
i f(ticket>0)

i f(OderSelect(ticket,SELECT_BY_TI CKET, MODE_TRADES))

Print("BUY order opened : ", O derQpenPrice());
else Print("Error opening BUY order : ", CetLastError());
return(0);

}
i f(isCrossed == 2)
{
ti cket =Or der Send(Synbol (), OP_SELL, Lots, Bi d, 3, 0,
Bi d- TakeProfit*Poi nt,"My EA", 12345, 0, Red);
i f(ticket>0)

i f(OrderSelect(ticket,SELECT_BY_TI CKET, MODE_TRADES))

Print("SELL order opened : ", OrderQpenPrice());
}
else Print("Error opening SELL order : ", GetLastError());
return(0);
return(0);

for(cnt=0;cnt<total;cnt ++)

Order Sel ect (cnt, SELECT_BY_ PGS, MODE_TRADES);

i f(OrderType()<=0P_SELL && Order Synbol () ==Synhol ())
{
i f(Order Type()==0P_BUY) /1 1ong position is opened
{

/1l should it be cl osed?
i f(isCrossed == 2)

Orderd ose(OrderTicket (), OrderLots(),Bid, 3, Violet);
/1 close position
return(0); // exit

/1 check for trailing stop
i f(TrailingStop>0)

i f(Bid-OderQoenPrice()>Point*TrailingStop)
i f(OrderStoplLoss()<Bi d-Point*TrailingStop)

O der Modi fy(Or der Ti cket (), Order QpenPri ce(), Bi d-
Poi nt*Trail i ngSt op, O der TakeProfit(), 0, G een);
return(0);

}
}

else // go to short position

/1l should it be cl osed?
if(isCrossed == 1)

Order Cl ose(Order Ti cket (), OrderLots(), Ask, 3, Violet);
/1 close position
return(0); // exit

/'l check for trailing stop
i f(TrailingStop>0)

i f((OderOpenPrice()-Ask)>(Point*TrailingStop))

i f((OrderStopLoss()>(Ask+Point*TrailingStop)) ||
(Order St opLoss()==0))

{

Or der Modi fy(O der Ti cket (), Or der QpenPri ce(), Ask+Poi nt *Trai | i ngSt op,
Order TakeProfit(), O, Red);
return(0);

}
}

}

return(0);

}

Note: don’t copy and paste the code above because it warped and will not work for you,
use the code provided with lesson in www.forex-tsd.com .

Scared?

Don't be scared of the 160 lines you have seen above, we will know everything about this
code line by line, | promiseit’s an easy task.

Test the Expert Advisor:

Before studying our expert advisor code we have to be check isit profitable one or not.

Note: Our expert advisor will work with EURUSD pairsin 4 Hours timeframe.
So compile the expert advisor by pressing F5 and load it in MetaTrader.

Y ou can test your expert advisor using two methods:
1- Livetrading

In live trading testing the results are more accurate but you have to spend days (and
maybe months) to know is the expert advisor profitable or not.

Y ou have to enable the expert advisor to automate your trades.
To enableit click Tools = Option menu (or use CTRL +O hotkey), that’s will bring
the Options windows (figure 3), click Expert Advisorstab and enable these options:

Enable Expert Advisors
Allow live trading

And click Ok button

http://www.forex-tsd.com

Options

_ .Server. Charts | -I:Il:uiects' -Trade Expert Advizors :-Email I Publizher | -Events

Enable Expert &dvizors [except for Custom Indicators a@

[] Dizable experts when the account has been changed

[] Dizable experts when the profile has been changed

[] 22k rariual confirnation
Allow DLL imparts
[Confitm DLL furction calls

Allow external experts imparts

[_ k. JI Cancel H Help

]

Figure 3 —Enabling expert advisor auto trade

Y ou will see the Smile symbol beside the expert advisor name which means your expert
advisor isworking and ready to trade for you (Figure 4).

Figure4 —Expert advisor isenabled

2- Strategy Tester:

The second method of testing your expert advisor which isless accurate but will not take
time isthe Strategy tester. We will know everything about Strategy tester later, let’s now
bring its window by pressing F6 (Figure 5).

When you get the window enter these options:

Symbol: EURUSD.
Period: H4 (4 Hours).
Model: Open price only.

Expert Advizor; ' by _First_Ed, Coders Guru V E=pert properties
Symbal; . EURUSD, Euro vz LS Dollar V“H4 V' Symbol properties
b odel; Open pricesz only [fastest method to analvze the bar jus V. Fecalculate Open chart
Ize date | From: (R E T To: AT 1 Optirmization ||
sl | Start

o Settings | Journal |

Figure 5 — Strategy tester window
Now click Start button to start testing the expert advisor.

Y ou will see a progress bar and the two tabs (Settings and Journal) became five tabs.
We interested in Report tab (Figure 6); click it to see your profit.

Bars in test 695 Ticks modelled 1292 Modelling gquality rfa
Initial deposit 1000000 | |
Total net profit Gaross profit 1025.50 Gross loss -67Z. 70
Profit Factor 1.52 Expected payoff 13.07
Absolute drawdown 26,00 Maximal drawdown (%% 349,20 (3.3, ..
Takal trades 27 Short positions (wan %) G (37.50%) Long positions {wan %) 19042, 11%:)
Profit trades (% of tokal) 15(55.56%) Loss trades (% of tokal) 12 (44, 44%:)
Largest profit trade 249,30 loss trade -92.70 M

Setkings | Results: | Graph | Report | Jourmal |

We have alot to say and to do in the next lesson; | hope you are ready for the challenge.
| welcome very much the questions and the suggestions.

Seeyou
Coders Guru
24-11-2005

MQL 4 COURSE

By Coders' guru
www.forex-tsd.com

-14-
Your First Expert Advisor
Part 2

W el come to the second part of creating Y our First Expert Advisor lesson.
In the previous part we have taken the code generated by the new programwizard and
added our own code which we are going to crack it today line by line.

Did you wear your coding gloves? Let’s crack.

Note: | have to repeat that our expert advisor isfor educational purpose only and will
not (or aimed to) make profits.

The code we have:
B +
/1] My_First_EA ng4 |
/1] Coders Quru
/1] http://ww. forex-tsd.com
B +
#property copyright "Coders Quru”
#property link "http://ww.forex-tsd. cont
[l---- input paraneters
extern doubl e TakePr of i t =250. O;
extern doubl e Lot s=0. 1;
ext ern doubl e Trail i ngSt op=35. 0;
B +
/1] expert initialization function
B +
int init()

{
Il----
Il----

return(0);

}
B +
/1] expert deinitialization function
B +
int deinit()

{

[]-=--

http://www.forex-tsd.com
http://www.forex-tsd.com\

[]-=--

return(0);
}
int Crossed (double linel , double Iine2)
{
static int last_direction = 0;
static int current_direction = O;
if(linel>line2)current_direction = 1; //up
if(linel<line2)current_direction = 2; //down
if(current_direction !'= last_direction) //changed
{
| ast_direction = current_direction
return (last_direction);
}
el se
{
return (0);
}
}
I A e I
/1] expert start function
A R e I
int start()
{
Il----

int cnt, ticket, total;
doubl e short Ena, | ongEns;

i f(Bars<100)
{
Print("bars |less than 100");
return(0);

}
i f(TakeProfit<10)
{
Print("TakeProfit |ess than 10");
return(0); // check TakeProfit

short Ema = i MA(NULL, O, 8, 0, MODE_EMA, PRI CE_CLCSE, 0) ;
| ongEma = i MA(NULL, O, 13, 0, MODE_EMA, PRI CE_CLGSE, 0) ;

int isCossed = Crossed (shortEmg, | ongEma);
total = OdersTotal ();
if(total < 1)

{

if(isCrossed == 1)

{
ticket =Or der Send(Synbol (), OP_BUY, Lot s, Ask, 3, 0, Ask+TakeProf it *Poi nt,
"My EA", 12345, 0, G een);
i f(ticket>0)

i f(OderSelect(ticket,SELECT_BY_TI CKET, MODE_TRADES))

Print("BUY order opened : ", O derQpenPrice());
}
else Print("Error opening BUY order : ", CetLastError());
return(0);

}
i f(isCrossed == 2)
{
ti cket =Or der Send(Synbol (), OP_SELL, Lots, Bi d, 3, 0,
Bi d- TakeProfit*Point, "My EA", 12345, 0, Red);
i f(ticket>0)

i f(OderSelect(ticket,SELECT_BY_TI CKET, MODE_TRADES))

Print("SELL order opened : ", OrderQpenPrice());
}
else Print("Error opening SELL order : ", GetLastError());
return(0);
return(0);

for(cnt=0;cnt<total;cnt ++)

Order Sel ect (cnt, SELECT_BY_ PGS, MODE_TRADES);
i f(OrderType()<=0OP_SELL && Order Synbol () ==Synbol ())

i f(Order Type()==0P_BUY) /1 1ong position is opened
{

/1l should it be cl osed?
i f(isCrossed == 2)

Orderd ose(OrderTicket (), OrderLots(),Bid,3,Violet);
/1 close position
return(0); // exit

/'l check for trailing stop
i f(TrailingStop>0)

i f(Bid-OderQoenPrice()>Point*TrailingStop)

i f(OderStopLoss()<Bid-Point*TrailingStop)
{
O der Modi fy(Or der Ti cket (), Order QpenPri ce(), Bi d-
Poi nt*Trail i ngSt op, O der TakeProfit(), 0, G een);
return(0);

}

else // go to short position

{

/1 should it be closed?
if(isCrossed == 1)
{
Order Cl ose(OrderTi cket (), O derLots(), Ask, 3, Viol et);
/'l close position
return(0); // exit

/1l check for trailing stop
i f(TrailingStop>0)

i f((OderQpenPrice()-Ask)>(Point*TrailingStop))
{

i f((OderStoplLoss()>(Ask+Point*TrailingStop)) ||
(Order St opLoss()==0))

{

O der Modi fy(O der Ti cket (), Order OQpenPri ce(), Ask+Poi nt*Trai | i ngSt op,
Order TakeProfit (), 0, Red);
return(0);

}
}
}

}
}

return(0);

Theidea behind our expert advisor.

Before digging into cracking our code we have to explain the idea behind our expert
advisor. Any expert advisor hasto decide when to enter the market and when to exit.
And the idea behind any expert advisor iswhat the entering and exiting conditions are?
Our expert advisor is asimple one and the ideabehind it isasimple too, let’s see it.

We use two EMA indicators, the first one isthe EMA of 8 days (sort EMA) and the
second one isthe EMA of 13 days (long EMA).

Note: using those EMAs or any thought in this lesson is not a recommendation of mine,
they are for educational purpose only.

Entering (Open):

Our expert advisor will enter the market when the short EM A line crosses the long
EMA line, the direction of each lines will determine the order type:

If the short EM A isabove thelong EM A will buy (long).

If the short EM A isbelow the long EM A we will sell (short).

We will open only one order at the same time.

Exiting (Close):

Our expert advisor will close the buy order when the short EM A crossesthe long EM A
and the short EM A isbelow thelong EMA.

And will close the sell order when the short EM A crosses the long EM A and the short
EMA isabove thelong EMA.

Our order (buy or sell) will automatically be closed too when the Take profit or the Stop
loss points are reached.

M odifying:
Beside entering (opening) and exiting (closing) the market (positions) our expert advisor
has the ability to modify existing positions based on the idea of Trailing stop point.

We will know how we implemented the idea of Trialing stop later in this |esson.

Now let’s resume our code cracking.

[l---- input paraneters
ext ern doubl e TakeProf it =250. 0;
ext ern doubl e Lot s=0. 1;

ext ern doubl e Trail i ngSt op=35. 0;

In the above lines we have asked the wizard to declare three exter nal variables (which
the user can set them from the properties window of our expert advisor).

The three variables are double data type. We have initialized them to default va ues (the
user can change these values from the properties window, but it recommended to leave
the defaults).

| have to pause again to tell you alittle story about those variables.

Stop loss:

It'salimit point you set to your order when reached the order will be closed, thisis
useful to minimize your lose when the market going against you.

Stop losses points are aways set below the current asking price on a buy or above the
current bid price on asell.

Trailing Stop

It's akind of stop loss order that is set at a percentage level below (for along position) or

above (for a short position) the market price. The price is adjusted as the price fluctuates.
We will talk about this very important concept later in this lesson.

Take profit:

It's similar to stop lose in that it’s alimit point you set to your order when reached the
order will be closed

There are, however, two differences:

e Thereisno “trailing” point.
e Theexit point must be set above the current market price, instead of below.

Order #2621947 buy 0.10 lot EURUSD at 1.1798 sk 0.0000 tp: 1.2048

FHRUED Symbol: | ELRUSE, Eufd v US Balfar
wolume:
Stoplose | mooon f| Takeprofity | oo |
iy, o o Comment: | |
1.1779 : 5
Typet | Madify Order ¥
1.1770 -
Modify Order
1.1762 Level: |35 v] points Lewel: | 250 & | points
14733 Copyast [10 - Copy as! | |
11744 Stoploss: | 11756 = TakeProfi: | L2047 3]
w2 MadiFy #2621547 buy 0, LO EURUSD o 11756 tp: 1,2047 |
11727 Stop Loss or Take Profit you sek must differ From market price by at least 3 pips.
1.1719

Figure 1 — Setting Stop loss and Take profit points

int Crossed (double linel , double Iine2)
{
static int last_direction = 0;
static int current_direction = 0;

if(linel>line2)current_direction = 1; //up
if(linel<line2)current_direction = 2; //down
if(current_direction !'= last_direction) //changed
{
| ast _direction = current_direction
return (last_direction);
}
el se
{
return (0);
}

As| told you before, the idea behind our expert advisor is monitor the crossing of the
short EMA and the long EMA lines. And getting the direction of the crossing (which line
is above and which line is below) which will determine the type of the order (buy, sell,
buy-close and sell-close).

For this goa we have created the Crossed function.

The Crossed function takes two double values as parameters and returns an integer.
The first parameter is the value of the first line we want to monitor (the short EMA in our
case) and the second parameter is the value of the second we want to (the long EMA).

The function will monitor the two lines every time we call it by saving the direction of
the two lines in static variables to remember their state between the repeated calls.

o It will return O if there’s no change happened in the last directions saved.

e It will return 1 if the direction has changed (the lines crossed each others) and the
first line is above the second line.

o It will return 2 if the direction has changed (the lines crossed each others) and the
first line is below the second line.

Note: You can use this function in your coming expert advisor to monitor any two lines
and get the crossing direction.

Let's see how did we writeit?

int Crossed (double linel , double Iline2)

The above line is the function declaration, it means we want to create Crossed function
which takes two double data type parameters and r etur ns an integer.

When you call this function you have to passto it two double parameters and it will
return an integer to you.

Y ou have to declare the function before using (calling) it. The place of the function
doesn't matter, | placed it above start() function, but you can place it anywhere else.

static int last_direction = 0;
static int current_direction = 0;

Here we declared two static integers to hold the current and the last direction of the two
lines. We are going to use these variables (they are static variables which means they
save their value between the repeated calls) to check if there’ s achange in the direction of
the lines or not.

we have initialized them to 0 because we don’t want them to work in the first call to the
function (if they worked in the first call the expert advisor will open an order as soon as
we load it in the terminal).

if(current_direction !=last_direction) //changed

In thisline we compare the two static variables to check for changes between the last call
of our function and the current call.

If last_direction not equal current_direction that’s mean there' s a change happened in the
direction.

last_direction = current_direction;
return (last_direction);

In this case (last_direction not equal current_direction) we have to reset our
last_direction by assigning to it the value of the current_direction.

And we will return the value of the last_direction. Thisvalue will be 1 if thefirst lineis
above the second line and 2 if the first line is below the second line.

el se

return (0);

}

Else (last_direction isequal current_direction) there’ s no change in the lines direction
and we haveto return 0.

Our program will call thisfunction inits start() function body and use the returned value
to determine the appropriate action.

In the coming part of thislesson we will know how did we call the function, and we will
know alot about the very important trading functions.
To that day | hope you the best luck.

| welcome very much the questions and the suggestions.
Seeyou

Coders Guru
01-12-2005

MQL 4 COURSE

By Coders' guru

(Appendix 1)
Bars

| have got alot of questions about the mystery of the bars count.
I’m going to describe everything about Bars in this appendix.

What’'sa BAR?

The bar is the dawning unit on the chart which you can specify by choosing the period of
the timeframe.

For example: The 30 minutes timeframe will draw a bar every 30 minutes.

MetaTrader (and other platforms) uses the values of to high, low, open and close prices to
draw the bar start and end boundaries. (Figure 1)

Open —= —

L o —_—

Figure 1 - Bar chart dawning

How the barsindexed in MQL4?

MQL4 indexes the bars from O (for the current bar) then 1, 2, 3 etc to the count of the
bars.

So, if you want to work with the current bar you use the index O.

And the index of the previous bar (of the current bar) is 1.

And the index 100 is the bar 100 in the history (100 bars ago).

And the index of last bar is the count of all bars on chart.

MQL4 BARS count functions:

In MQL4 thereis avariety of functions working with the count of bars:

int Bars
This function returns the number of the bars of the current chart.

Note that, changing the timeframe will change this count.

int iBars(string symbol, int timeframe)

This function returns the number of bars on the specified currency pairs symbol and
timeframe.

Assume you are working on 30M timeframe and you want to get the count of Barson 1H
time frame, you use thisline:

iBars(NULL, PERIOD_H1));
Note: If you used it like this:
iBars(NULL,0));

It returns the same number as Bars function.

int I ndicator Counted()

When you are writing your indicator, you know now how to get the number of bars.
Y ou use this number in your calculation and line dawning.

But it’ s useful to know if you have counted the bar before or it’ s the first time you count it.
That’ s because, if you have counted it before you don’t want to count it again and want to
work only with the new bars.

In this case you use the function I ndicator Counted(), which returns the number of bars
have been counted by your indicator.

At the first run of your indicator this count will be zero, that’s because your indicator
didn’t count any bars yet.

Afterwards, it will equal to the count of Bars— 1. That’s because the last bar not counted
yet (Figure 2).

16:55:08 Last Bar Open = 1.15230000
16:55:08 . First Bar Open = 1.22200000
16:55:08 Bars = 15831

16:55:05 . counked _bars = 15330
16:55:02 Last Bar Open = 1.15230000
16:55:02 . First Bar Open = 1.22200000
16:55:02 Bars = 15831

16:55;02 . counted_bars =10

Figure 2 — Program output

& o b Lk ek

Let’swrite a small program to show you what’s going on.

I I R i i T +
1] Bars. m4 |
11| Coder sguru
11| http://ww. forex-tsd. com |
I I R i +
#property copyright "Codersguru”
#property |ink "http://ww.forex-tsd. cont
#property indicator_chart_w ndow
I I R i i T +
/1] Customindicator initialization function
I I R i I +
int init()
//---- indicators
If----
return(l);
}
I I R i i T +
/1] Custor indicator deinitialization function
I I R i I +
int deinit()
{
If----
If----
return(0);
}
I I R i i T +
/1] CQustomindicator iteration function
I I R i I +
int start()
{
If----
Alert("counted_bars =" , IndicatorCounted()); //The count of bars
have been counted
Alert("Bars =" , Bars); //The count of the bars on the chart
Alert("iBars =" , iBars(NULL,0)); //the sane as Bars function
Alert("First Bar Qpen =" , Open[Bars-1]); //CQpen price of the

first bar

Alert("Last Bar Open =" , Qpen[0]); //Open price of the |ast bar
(current bar)
Il----

return(0);

}

Note: This program produces the image you have seen in figure 2

| hope the Bars count is clear now.
| welcome very much the questions and the suggestions.

Seeyou
Coders Guru
21-11-2005

MQL 4 COURSE

By Coders guru
www.forex-tsd.com

(Appendix 2)
Trading Functions

| nthis appendix you will find the description of the 25 MQL4 trading functions.

| decided to write this appendix before writing the third part of “Your First Expert
Advisor” lesson because you have to know these important functions before cracking
the remaining of the code.

Order Send:

ntax:

int Order Send(string symbol, int cmd, double volume, double price, int dippage,
double stoploss, double takeprofit, string comment=NULL, int magic=0, datetime
expiration=0, color arrow_color=CLR_NONE)

Description:

The Order Send function used to open a sell/buy order or to set a pending order.
It returns the ticket number of the order if succeeded and -1 in failure.
Use GetLastError function to get more details about the error.

Note: Theticket number isaunique number returned by Order Send function which
you can use later as areference of the opened or pending order (for example you can
use the ticket number with OrderClose function to close that specific order).

Note: GetLastError function returns a predefined number of the last error occurred
after an operation (for example when you call GetLastError after Order Send
operation you will get the error number occurred while executing Order Send).

Calling GetLastError will reset the last error number to O.
You can find afull list of MQL4 errors numbers in stderror.mgh file.

And you can get the error description for a specific error number by using
ErrorDescription function which defined at stdlib.mgh file.

http://www.forex-tsd.com

Parameters:

This function takes 11 parameters:

string symbol:
The symbol name of the currency pair you trading (Ex: EURUSD and USDJPY).

Note: Use Symbol() function to get currently used symbol and Order Symbol function
to get the symbol of current selected order.

int cmd:
An integer number indicates the type of the operation you want to take; it can be one
of these values:

Constant Value Description

OP_BUY 0 Buying position.
OP_SELL 1 Selling position.
OP_BUYLIMIT 2 Buy limit pending position.
OP_SELLLIMIT 3 Sell limit pending position.
OP_BUYSTOP 4 Buy stop pending position.
OP_SELLSTOP 5 Sell stop pending position.

Note: You can use the integer representation of the value or the constant name.
For example:

Order Send(Symbol(),0,...) is equal to Order Send(Symbol(),or_Buy,...) .

But it's recommended to use the constant name to make your code clearer.

double volume:
The number of lots you want to trade.

double price:
The price you want to open the order at.
Use the functions Bid and Ask to get the current bid or ask price.

int slippage:
The slippage value you assign to the order.

Note: dippage is the difference between estimated transaction costs and the amount
actually paid.
dippage is usually attributed to a change in the spread. (Investopedia.com).

double stoploss:
The price you want to close the order at in the case of losing.

double takeprofit:
The price you want to close the order at in the case of making profit.

string comment:
The comment string you want to assign to your order (Figure 1).
The default value is NULL which means there's no comment assigned to the order.

Note: Default value of a parameter means you can leave (don’t write) it out, and
MQL4 will use a predefined value for this parameter.

For example we can write Order Send function with or without comment parameter
like this:

Order Send(Symbol (),OP_BUY,Lots,Ask,3,Ask-25* Point,Ask+ 25* Point," My order
comment” ,12345,0,Green);

Or likethis:

Order Send(Symbol (),OP_BUY,Lots,Ask,3,Ask-

25* Point,Ask+ 25* Point,12345,0,Green);

int magic:
The magic number you assign to the order.

Note: Magic number is anumber you assign to your order(s) as areference enables
you to distinguish between the different orders. For example the orders you have
opened by your expert advisor and the orders have opened manually by the user.

Type] Lo | 25, Price SIL TP Time Price . Swap Praofit Comment | %
sell 0,10 eurusd 1,1722 00000 11672 2005.... 1.1672 0,00 50,00 macd sample[tp]
selll 0,10 eurusd 11722 00000 116720 2005.... 1.1672 0.00 50,00 macd sample[tp]

by 0,10 eorusd 1,1724 00000 1.1774 r’ macd sample

zell 0,10 ewrusd 1.1721 0.0000 11671 2005, 0.0

macd sample[tp] 3

< ' |>

Terminal

Trade | Accounk History | Alerts | Mailbox | Experts | Journal |

Figure 1 - Comment

datetime expiration:
The time you want your pending order to expire at.
The default time is 0 which means there's no exportation.

Note: Thetime here isthe server time not your local time, to get the current server
time use CurTime function and to get the local time use Local Time function.

color arrow_color:
The color of opening arrow (Figure 2), the default value is CLR_NONE which means
there's no arrow will be drawn on the chart.

ELURUSE,H4 1,1995 1.2009 1,1986 12003 | 1,1855
My _First_E#A testing with TakePrafit=250; Lots=0,1; TrailingStop=35;

1.1230

F1.1805

11780

I 1.175E5

F1.1730

I 1.1708

11620

L 1.1685
?Dec 2005 2 Dec 1600 5 Dec 0:00 6 Dec 000D 6 Dec 16:00 7 Dec 08:00 5 Dec 0000 8 Dec 16:00

EURLISD, H1 EURLSD,H4

Figure 2 — Arrows color

Example:

int ticket;
If(iIRSI(NULL,0,14,PRICE_CLOSE,0)<25)
{
ticket=OrderSend(Symbol(),OP_BUY ,1,Ask,3,Ask-25* Point,Ask+25* Point,"My
order #2",16384,0,Green);
if(ticket<0)
{
Print("OrderSend failed with error #',GetLastError());
return(0);
}

}

OrderModify:

ntax:

bool Order M odify(int ticket, double price, double stoploss, double takepr ofit,
datetime expiration, color arrow_color=CLR_NONE)

Description:

The OrderModify function used to modify the properties of a specific opened order or

pending order with the new values you pass to the function.
It returnstrue if the order successfully modified and false in failure.
Use GetLastError function to get more details about the error.

Parameters:
This function takes 6 parameters:

int ticket:
The ticket number of the order you want to modify.

Note: This number has been assigned to the order by the function Order Send.
Y ou can use the function OrderTicket to get the ticket number of the current order.

double price:
The price you want to set for the order.

] Note: Use the function Order OpenPrice to get the open price for the current order.

double stoploss:
The price you want to close the order at in the case of losing.

double takeprofit:
The price you want to close the order at in the case of making profit.

Note: We usually use the OrderModify function to change the stoploss and/or
takeprofit values and that called Trailing.

datetime expiration:
The time you want your pending order to expire at.
Use 0 if you don't want to set an expiration time.

color arrow_color:

The color of the arrow, the default value is CLR_NONE which means there's no arrow

will be drawn on the chart.

Example:

if(TrailingStop>0)
{
SelectOrder(12345,SELECT_BY_TICKET);
if(Bid-OrderOpenPrice()>Point* TrailingStop)

If(Order StopL oss()<Bid-Point* TrailingStop)
{

OrderModify(OrderTicket(),Ask-10* Point,Ask-
35* Point,OrderTakeProfit(),0,Blue);
return(0);
}
}
}

OrderClose:

ntax:

bool Order Close(int ticket, double lots, double price, int slippage,
color Color=CLR_NONE)

Description:
The OrderClose function used to close a specific opened order (by its ticket).

It returnstrue if the order successfully closed and false in failure.
Use GetLastError function to get more details about the error.

Parameters:
This function takes 5 parameters:

int ticket:
The ticket number of the order you want to close.

double lots:
The number of lots you use in the order.

] Note: Usethe OrderLots function to get the lots value of the current order.

double price:
The price you want to open the order at.
Use the functions Bid and Ask to get the current bid or ask price.

int slippage:
The dlippage value of the order.

color Color:
The color of closing arrow, the default value is CLR_NONE which means there's no
arrow will be drawn on the chart.

Example:

If(iIRSI(NULL,0,14,PRICE_CLOSE,0)>75)
{
OrderClose(order_id,1,Ask,3,Red);
return(0);
}

Order Select:

ntax:

bool Order Select(int index, int select, int pool=MODE_TRADES)

Description:

The Order Select function used to select an opened order or a pending order by the
ticket number or by index.

It returnstrue if the order successfully selected and false in failure.

Use GetLastError function to get more details about the error.

Note: You have to use Order Select function before the trading functions which takes
no parameters:

OrderMagicNumber, Order ClosePrice, OrderCloseTime, OrderOpenPrice,
OrderOpenTime, Order Comment, Order Commission, Order Expiration, OrderLots,
OrderPrint, OrderProfit, Order StopLoss, Order Swap, Order Symbol,
OrderTakeProfit, OrderTicket and Order Type

Parameters:
This function takes 3 parameters:

int index:
The index or the ticket number of the order you want to select. It depends on the
second parameter (selecting type).

int select:

The type of selecting operation (by index or by ticket number).
It can be one of two values:

SELECT _BY _POS. usethe position (index) of the order.
SELECT _BY_TICKET — usetheticket number of the order.

int pool:
If you used the SELECT_BY_POS selecting type, you have to determine which pool
(data) you will select from:

MODE_TRADES select from the currently trading orders (opened and pending
orders). Thisisthe default value.
MODE_HISTORY: select from the history (closed and canceled orders).

Example:

if(OrderSelect(12470, SELECT_BY_TICKET)==true)
{
Print("order #12470 open priceis", OrderOpenPrice());
Print("order #12470 close price is", OrderClosePrice());
}
else
Print("OrderSelect failed error codeis’,GetLastError());

Order Delete:

ntax:

bool OrderDelete(int ticket)

Description:
The OrderDelete function used to delete a pending order.

It returnstrue if the order successfully deleted and false in failure.
Use GetLastError function to get more details about the error.

Parameters:
This function takes only 1 parameter:

int ticket:
Theticket number of the order you want to delete.

Example:

if(Ask>varl)

{
OrderDelete(order_ticket);
return(0);

}

Order CloseBy:

ntax:

bool Order CloseBy(int ticket, int opposite, color Color=CLR_NONE)

Description:

The OrderCloseBy function used to close a specific opened order by opening an
opposite direction order.

It returnstrue if the order successfully closed and false in failure.

Use GetLastError function to get more details about the error.

Parameters:

This function takes 3 parameters:
int ticket:
Theticket number of the order you want to close.

int opposite:
The ticket number of the order you want to open in the opposite direction.

color Color:

The color of closing arrow, the default value is CLR_NONE which means no arrow
will be drawn on the chart.

Example:

iIf(iIRSI(NULL,0,14,PRICE_CLOSE,0)>75)
{
OrderCloseBy(order_id,opposite id);
return(0);
}

Order Type:

ntax:

int Order Type()

Description:

The Order Type function returns the type of selected order that will be one of:
OP_BUY, OP_SELL, OP_BUYLIMIT, OP_BUYSTOP, OP_SELLLIMIT or
OP_SELLSTOP (see Order Send function)

The order must be selected by Order Select before calling Order Type.

Parameters:

This function doesn’t take any parameters and returns an integer date type (the type of
selected order).

Example:

int order_type;

if(OrderSelect(12, SELECT_BY _POS)==true)
{
order_type=OrderType&();
...
}

ese
Print("OrderSelect() returned error - ",GetLastError());

HistoryT otal:

ntax:

int HistoryTotal()

Description:

The HistoryTotal function searches the account history loaded in the terminal and
returns the number of closed orders.

Note: We usually use this function with the Order Select function to get information
about a specific order in the history.

Parameters:
This function doesn’t take any parameters and returns an integer (the number of

closed ordersin the history).
Use GetLastError function to get more details about the error.

Example:

I/ retrieving info from trade history
int i,hstTotal=HistoryTotal();
for(i=0;i<hstTotal;i++)

//---- check selection result

if(OrderSelect(i, SELECT_BY_POS,MODE_HISTORY)==false)
{
Print("Access to history failed with error (",GetLastError(),")");
break;
}

// some work with order

}

OrderClosePrice:

ntax:

double OrderClosePrice()

Description:

The Order ClosePrice function returns the close price of selected order.
The order must be selected by Order Select before calling Order ClosePrice.

Parameters:

This function doesn’t take any parameters and returns a double data type (the close
price of the selected order).

Example:

if(OrderSelect(ticket, SELECT_BY_POS)==true)
Print("Close price for the order " ticket," = ",OrderClosePrice());
ese
Print("OrderSelect failed error codeis’,GetLastError());

OrderCloseTime:

ntax:

datetime OrderCloseTime()

Description:

The Order CloseTime function returns the close time of the selected order.

If the return value is O that means the order hasn’t been closed yet otherwise it has
been closed and retrieved from the history.

The order must be selected by Order Select before calling Order CloseTime.

Parameters:

This function doesn’t take any parameters and returns a datetime data type (the close
time of the selected order).

Example:

if(OrderSelect(10,SELECT_BY_POS,MODE_HISTORY)==true)

{

datetime ctm=OrderOpenTime();

if(ctm>0) Print("Open time for the order 10", ctm);
ctm=OrderCloseTime();

if(ctm>0) Print("Close time for the order 10", ctm);

}

else
Print("OrderSelect failed error codeis’,GetLastError());

Order Comment:

ntax:

string Order Comment()

Description:

The Order CloseTime function returns the comment string for the selected order.

Note: This comment has been assigned when you opened the order with Order Send or
has been assigned by the server. Sometimes the server append its comment at the end
of you comment string.

The order must be selected by Order Select before calling Order CloseTime.

Parameters:

This function doesn’t take any parameters and returns a string data type (the comment
string of the selected order).

Example:

string comment;
if(OrderSelect(10,SELECT_BY_TICKET)==false)

Print("OrderSelect failed error code is’,GetLastError());

return(0);
}

comment = OrderComment();
Il ...

Order Commission:

ntax:

double Order Commission()

Description:

The Order Commission function returns the commission amount of the selected order.
The order must be selected by Order Select before calling Order Commission.

Parameters:

This function doesn’t take any parameters and returns a double data type (the
commission amount of the selected order).

Example:

if(OrderSelect(10,SELECT_BY_POS)==true)
Print("Commission for the order 10 ",0OrderCommission());
else
Print("OrderSelect failed error codeis’,GetLastError());

OrderExpiration:

ntax:

datetime OrderExpiration()

Description:

The OrderExpiration function returns the expiration time of the selected pending
order that you have set in Order Send.
The order must be selected by Order Select before calling Order Expiration.

Parameters:

This function doesn’t take any parameters and returns a datetime data type (the
expiration time of the selected pending order).

Example:

If(OrderSelect(10, SELECT_BY_TICKET)==true)
Print("Order expiration for the order #10is",OrderExpiration());
else
Print("OrderSelect failed error codeis’,GetLastError());

OrderLots:

ntax:

double OrderLots()

Description:

The OrderLots function returns the lots value of the selected order that you have set in
Order Send (volume parameter).
The order must be selected by Order Select before calling OrderLots.

Parameters:

This function doesn’t take any parameters and returns a datetime data type (the lots
value of the selected order).

Example:

if(OrderSelect(10,SELECT_BY_POS)==true)
Print("lots for the order 10 ",OrderLots());
else
Print("OrderSelect failed error codeis’,GetLastError());

OrderM agicNumber:

ntax:

int OrderM agicNumber ()

Description:

The OrderMagicNumber function returns the magic number of the selected order that
you have set in Order Send.
The order must be selected by Order Select before calling OrderMagicNumber.

Parameters:

This function doesn’t take any parameters and returns an integer datatype (the magic
number of the selected order).

Example:

if(OrderSelect(10,SELECT_BY_POS)==true)
Print("Magic number for the order 10 ", OrderMagicNumber());
ese
Print("OrderSelect failed error codeis’,GetLastError());

OrderOpenPrice:

ntax:

double Order OpenPrice()

Description:

The Order OpenPrice function returns the open price of the selected order.
The order must be selected by Order Select before calling OrderOpenPrice.

Parameters:

This function doesn’t take any parameters and returns a double data type (the open
price of the selected order).

Example:

if(OrderSelect(10, SELECT_BY_POS)==true)
Print("open price for the order 10 ",OrderOpenPrice());
else
Print("OrderSelect failed error codeis’,GetLastError());

OrderOpenTime:

ntax:

datetime OrderOpenTime()

Description:

The Order OpenTime function returns the open time of the selected order.
The order must be selected by Order Select before calling OrderOpenTime.

Parameters:

This function doesn’t take any parameters and returns a datetime data type (the open
time of the selected order).

Example:

if(OrderSelect(10, SELECT_BY_POS)==true)
Print("open time for the order 10 *,0OrderOpenTime());
else
Print("OrderSelect failed error codeis’,GetLastError());

OrderPrint:

ntax:

void OrderPrint()

Description:

The OrderPrint function prints the selected order datato the expert log file.
The order must be selected by Order Select before calling OrderPrint.

Parameters:

This function doesn’t take any parameters and doesn’t return any value (void).

Note: void means the function doesn’t return any value, so, you can’'t assign it to a
variable like this:
int i = OrderPrint(); //no meaning line, although the compiler will not complain.

Example:

if(OrderSelect(10, SELECT_BY_TICKET)==true)
OrderPrint();
else
Print("OrderSelect failed error codeis’,GetLastError());

Order Profit:

ntax:

double OrderProfit()

Description:

The OrderProfit function returns the profit of the selected order.
The order must be selected by Order Select before calling OrderProfit.

Parameters:

This function doesn’t take any parameters and returns a double data type (the profit of
the selected order).

Example:

if(OrderSelect(10, SELECT_BY_POS)==true)
Print("Profit for the order 10 ",OrderProfit());
ese
Print("OrderSelect failed error codeis’,GetLastError());

Order StopL oss:

ntax:

double Order StopL oss()

Description:

The Order StopLoss function returns the stoploss price of the selected order that you
have set in Order Send or modified with OrderModify.
The order must be selected by Order Select before calling Order SopLoss.

Parameters:

This function doesn’t take any parameters and returns a double data type (the stoploss
price of the selected order).

Example:

if(OrderSelect(ticket, SELECT_BY_POS)==true)
Print(" Stop loss value for the order 10", OrderStopLoss());
else
Print("OrderSelect failed error codeis’,GetLastError());

OrdersTotal:

ntax:

int OrdersTotal()

Description:

The OrdersTotal function returns the number of opened and pending orders. If this
number is 0 that means there are no orders (market or pending ones) has been opened.
Parameters:

This function doesn’t take any parameters and returns an integer datatype (the
number of opened and pending orders).

Example:

int handle=FileOpen("OrdersReport.csv",FILE_WRITE|FILE_CSV,"\t");
if(handle<0) return(0);
Il write header
FileWrite(handle,"#","open price","open time","symbol","|ots");
int total=OrdersT otal();
/[write open orders
for(int pos=0;pos<total;post++)
{
if(OrderSelect(pos,SELECT_BY_POS)==false) continue;

FileWrite(handle,Order Ticket(),OrderOpenPrice(),OrderOpenTime(),Order Symbol(),OrderLots());

}
FileClose(handle);

Order Swap:

ntax:

double Order Swap()

Description:

The Order Swap function returns the swap value of the selected order.
The order must be selected by Order Select before calling Order Swap.

A swap involves the exchange of principal and interest in one currency for the same
in another currency. Currency swaps were originally done to get around the problem
of exchange controls. (Investopedia.com).

Parameters:

This function doesn’t take any parameters and returns a double data type (the swap
value of the selected order).

Example:

if(OrderSelect(order_id, SELECT_BY_TICKET)==true)
Print("Swap for the order #", order_id, " ",OrderSwap());
else
Print("OrderSelect failed error codeis’,GetLastError());

Order Symbol:

ntax:

string Order Symbol()

Description:
The Order Symbol function returns the string representation of currency pair of the

selected order (Ex: EURUSD and USDJPY).
The order must be selected by Order Select before calling Order Symbol.

Parameters:

This function doesn’t take any parameters and returns a string data type (the string
representation of currency pair of the selected order).

Example:

if(OrderSelect(12, SELECT_BY_POS)==true)
Print("symbol of order #', OrderTicket(), " is", OrderSymbol());
else
Print("OrderSelect failed error codeis’,GetLastError());

Order TakePr ofit:

ntax:

double Order TakeProfit()

Description:

The Order TakeProfit function returns the takeprofit price of the selected order that
you have set in OrderSend or modified with Order Modify.
The order must be selected by Order Select before calling Order TakeProfit.

Parameters:

This function doesn’t take any parameters and returns a double data type (the
takeprofit price of the selected order).

Example:

if(OrderSelect(12, SELECT_BY_POS)==true)
Print("Order #',OrderTicket()," profit: ", OrderTakeProfit());
else
Print("OrderSelect() & 2¢ 1eJé - ",GetLastError());

OrderTicket:

ntax:

int OrderTicket()

Description:

The OrderTicket function returns the ticket number of the selected order.
The order must be selected by Order Select before calling Order Ticket.

Parameters:

This function doesn’t take any parameters and returns an integer datatype (the ticket
number of the selected order).

Example:

if(OrderSelect(12, SELECT_BY_POS)==true)
order=OrderTicket();
else
Print("OrderSelect failed error codeis’,GetLastError());

| hope the trading functions are clearer now.

| welcome very much your questions and suggestions.

Coders Guru
20-12-2005

